iIPOPO Documentation
Release 0.7.0

Thomas Calmant

May 12, 2018

Contents

1 Usage survey
2 State of this documentation

3 User’s Guide

3.1 Foreword
3.2 Installation,
3.3 Quickstart e
34 Tutorials e e
3.5 ReferenceCards

4 API Reference

41 APLo

5.1 WhousesiPOPO?
52 ReleaseNotes
53 License e

5 Additional Notes
Python Module Index

iPOPO Documentation, Release 0.7.0

IPOPO

iPOPO is a Python-based Service-Oriented Component Model (SOCM) based on Pelix, a dynamic service platform.
They are inspired by two popular Java technologies for the development of long-lived applications: the iPOJO compo-
nent model and the OSGi Service Platform. iPOPO enables the conception of long-running and modular IT services.

This documentation is divided into three main parts. The Quickstart will guide you to install iPOPO and write your
first components. The Reference Cards section details the various concepts of iPOPO. Finally, the Tuforials explain
how to use the various built-in services of iPOPO. You can also take a look at the slides of the iPOPO tutorial to have
a quick overview of iPOPO.

This documentation is inspired by the Flask’s one.

iPOPO depends on a fork of jsonrpclib, called jsonrpclib-pelix. The documentation of this library is available on
GitHub.

Contents 1

http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html
http://osgi.org/
https://github.com/tcalmant/ipopo-tutorials/releases
http://flask.pocoo.org/
https://github.com/joshmarshall/jsonrpclib
https://github.com/tcalmant/jsonrpclib
https://github.com/tcalmant/jsonrpclib

iPOPO Documentation, Release 0.7.0

2 Contents

CHAPTER 1

Usage survey

In order to gain insight from the iPOPO community, I've put a really short survey on Google Forms (no login required).

Please, feel free to answer it, the more answers, the better. All feedback is really appreciated, and I’ll write about the
aggregated results on the users’ mailing list, once enough answers will have been received.

https://docs.google.com/forms/d/1zx18_Rg27mjdGrlbtr9fWFmVnZNINo9XCfrYJbr4oJI

iPOPO Documentation, Release 0.7.0

4 Chapter 1. Usage survey

CHAPTER 2

State of this documentation

This documentation is a work in progress, starting nearly from scratch.

The previous documentation was provided as a wiki on a dedicated server which I had to take down due to many
reasons (DoS attacks, update issues, ...). As a result, the documentation is now hosted by Read the Docs. The main
advantages are that it is now included in the Git repository of the project, and it can include docstrings directly from
the source code.

Alas, the wiki content must be completely rewritten in reStructuredText format. I take this opportunity to update the
documentation, but it takes a lot of time, and I can’t work on this project as much as I'd like to. So, if you have any
question which hasn’t been answered in the current documentation, please ask on the users’ mailing list.

As always, all contributions to the documentation and the code are very appreciated.

https://readthedocs.org/
https://groups.google.com/forum/#!forum/ipopo-users

iPOPO Documentation, Release 0.7.0

6 Chapter 2. State of this documentation

CHAPTER 3

User’s Guide

This chapter details how to install and use iPOPO.

3.1 Foreword

This section describes the purpose and goals of the iPOPO project, as well as some background history.

3.1.1 What is iPOPO ?

iPOPO is a Python-based Service-Oriented Component Model (SOCM). It is split into two parts:
¢ Pelix, a dynamic service platform
¢ iPOPO, the SOCM framework, hence the name.

Both are inspired on two popular Java technologies for the development of long-lived applications: the OSGi Service
Platform and the iPOJO component model.

iPOPO allows to conceive long-running and modular IT services in Python.

About the name, iPOPO is inspired from iPOJO, which stands for injected Plain Old Java Object. Java being replaced
by Python, the name became iPOPO. The logo comes from the similarity of pronunciation with the french word for
the hippo: hippopotame.

3.1.2 A bit of history

During my PhD thesis, I had to monitor applications built as multiple instances of OSGi frameworks and based on
iPOJO components. This required to access some OS-specific low-level methods and was initially done in Java with
INA.

To ease the development of probes, the monitoring code has been translated to Python. At first, it was only a set of
scripts without any relations, but as the project grown, it was necessary to develop a framework to handle those various

http://osgi.org/
http://osgi.org/
http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html

iPOPO Documentation, Release 0.7.0

parts and to link them together. In order to be consistent, I decided to develop a component model similar to what was
used used in Java, i.e. iPOJO, and keeping the concepts of OSGi.

A first draft, called python.injections was developped in December 2011. It was a proof of concept which was
good enough for my employer, isandlaTech (now Cohorte Technologies), to allow the development of what would
become iPOPO.

The first public release was version 0.3 in April 2012, under the GPLv3 license. In November 2013, iPOPO adopts
the Apache Software License 2.0 with release 0.5.5.

On March 2015, release 0.6 dropped support for Python 2.6. Since then, the development slowed down as the core
framework is considered stable.

iPOPO 1.0 should be released mid-2017, when the remote services engine will be upgraded.

3.1.3 SOA and SOCM in Python

The Service-Oriented Architecture (SOA) consists in linking objects through provided contracts (services) registered
in a service registry.

A service is an object associated to properties describing it, including the names of the contracts it implements. It
is stored in the service registry of the framework by the service provider. The provider or the service itself (they are
often the same) must handle the requirements, i.e. looking for the services required to work and handling their late
un/registration.

A component is an object instanciated and handled by an instance manager created by iPOPO. The manager handles
the life cycle of the component, looking for its dependencies and handling their late registration, unregistration and
replacement. It eases the development and allows a lot of dynamism in an application.

The conclusion is that the parts of an application which only provide a feature can be written as a simple service,
whereas parts using other elements of the application should be written as components.

Continue to Installation, the Quickstart or the Tutorials.

3.2 Installation

iPOPO depends on only one external library, jsonrpclib-pelix, which provides some utility methods and is required to
enable remote services.

To install iPOPO, you will need Python 2.7, Python 3.3 or newer. iPOPO is constantly tested, using Tox and Travis-CI,
on the following interpreters:

e Python 2.7,3.3,3.4,3.5
* Pypy2et3

Support for Python 2.6 has been dropped with iPOPO 0.6. The framework should run on Python 3.2, but it is not
officialy supported.

There are many ways to install iPOPO, so let’s have a look to some of them.

3.2.1 System-Wide Installation

This is the easiest way to install iPOPO, even though using virtual environments is recommended to develop your
applications.

For a system-wide installation, just run pip with root privileges:

8 Chapter 3. User’s Guide

http://www.cohorte-technologies.com/fr/
https://github.com/tcalmant/jsonrpclib

iPOPO Documentation, Release 0.7.0

’$ sudo pip install iPOPO

If you don’t have root privileges and you can’t or don’t want to use virtual environments, you can install iPOPO for
your user only:

’$ pip install —--user iPOPO

3.2.2 Virtual Environment

Using virtual environments is the recommended way to install libraries in Python. It allows to try and develop with
specific versions of libraries, to test some packages, etc. without messing with your Python installation, nor your main
development environment.

It is also useful in production, as virtual environment allows to isolate libraries, avoiding incompatibilities.

Python 3.3+

Python 3.3 introduced the venv module, introducing a standard way to handle virtual environments. As this module
is included in the Python standard library, you shouldn’t have to install it manually.

Now you can create a new virtual environment, here called ipopo-veny:

$ python3 -m venv ipopo-venv

Continue to Then. .. to activate your new environment.

Previous versions

Before Python 3.3, virtual environments were handled by a third-party package, virtualenv, which must be in-
stalled alongside Python.

If you are on Linux or Mac OS X, the following command should work:

’$ sudo pip install virtualenv

On Linux, virtualenv is probably provided by your distribution. For example, you can use the following command on
Debian or Ubuntu:

’$ sudo apt-get install python-virtualenv

Once virtualenv is installed, you can create you first virtual environment:

$ virtualenv ipopo-venv
New python executable in ipopo-venv/bin/python
Installing setuptools, pPip..«eeeve.... done.

Then...

Now, whenever you want to work on this project, you will have to activate the virtual environment:

$. ipopo-venv/bin/activate

If you are a Windows user, the following command is for you:

3.2. Installation 9

iPOPO Documentation, Release 0.7.0

’> ipopo-venv\Scripts\activate

Either way, you show now be using your virtual environment. The shell prompt should indicate it.

Now you can install iPOPO using pip. As this is a virtual environment, you don’t need administration rights:

’$ pip install iPOPO

iPOPO is now installed and can be used in this environment. You can now try it and develop your components.

Once you are done, you can get out of the virtual environment using the following command (both on Linux and
Windows):

$ deactivate

3.2.3 Development version

If you want to work with latest version of iPOPO, there are two ways: you can either let pip pull in the development
version, or you can tell it to operate on a git checkout. Either way, a virtual environment is recommended.

Get the git checkout in a new virtual environment and run in development mode:

git clone https://github.com/tcalmant/ipopo.git
Cloning into 'ipopo'...

cd ipopo

python3 -m venv ipopo-venv

New python executable in ipopo-venv/bin/python
Installing setuptools, pip............ done.

$. ipopo-venv/bin/activate

$ python setup.py develop

#

Finished processing dependencies for iPOPO

Ly 0 FH=

This will pull the dependency (jsonrpclib-pelix) and activate the git head as the current version inside the virtual
environment. As the develop installation mode uses symbolic links, you simply have to run git pull originto
update to the latest version of iPOPO in your virtual environment.

3.3 Quickstart

Eager to get started? This page gives a good introduction to iPOPO. It assumes you already have iPOPO installed. If
you do not, head over to the Installation section.

3.3.1 Play with the shell

The easiest way to see how iPOPO works is by playing with the builtin shell.

To start the shell locally, you can run the following command:

bash$ python -m pelix.shell
«% Pelix Shell prompt =x*
$

10 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

Survival Kit

As always, the life-saving command is help:

$ help

=== Name space 'default' ===

- ? [<command>]
Prints the available methods and their documentation,
or the documentation of the given command.

- bd <bundle_id>
Prints the details of the bundle with the given ID
or name

- bl [<name>]
Lists the bundles in the framework and their state.
Possibility to filter on the bundle name.

The must-be-known shell commands of iPOPO are the following:

Command | Description

help Shows the help

loglevel Prints/Changes the log level

exit Quits the shell (and stops the framework in console UTI)
threads Prints the stack trace of all threads

run Runs a shell script

Bundle commands

The following commands can be used to handle bundles in the framework:

Command | Description

install Installs a module as a bundle

start Starts the given bundle

update Updates the given bundle (restarts it if necessary)
uninstall Uninstalls the given bundle (stops it if necessary)
bl Lists the installed bundles and their state

bd Prints the details of a bundle

In the following example, we install the pelix.shell.remote bundle, and play a little with it:

$ install pelix.shell.remote
Bundle ID: 12

$ start 12

Starting bundle 12 (pelix.shell.remote)...

$ bl

e Tttt fomm fomm +
| ID | Name | State | Version |
+ + + =+ +
| 0 | pelix.framework | ACTIVE | 0.6.4 |
e - o +
e fommm———— fommm +

| 12 | pelix.shell.remote

(continues on next page)

3.3. Quickstart

11

iPOPO Documentation, Release 0.7.0

(continued from previous page)

e e fom— +
13 bundles installed

$ update 12

Updating bundle 12 (pelix.shell.remote)...

$ stop 12

Stopping bundle 12 (pelix.shell.remote)...

$ uninstall 12

Uninstalling bundle 12 (pelix.shell.remote)...

$

While the install command requires the name of a module as argument, all other commands accepts a bundle ID
as argument.

Service Commands

Services are handles by bundles and can’t be modified using the shell. The following commands can be used to check
the state of the service registry:

Command | Description
sl Lists the registered services
sd Prints the details of a services

This sample prints the details about the iPOPO core service:

$ sl

o o
Gt ———— +

| ID | Specifications | Bundle o
— | Ranking |

+ + + +

| 1 | ['"ipopo.handler.factory'] | Bundle (ID=5, Name=pelix.ipopo.handlers.properties),,
—~1 0 |

e e e e
pb————————— +

e Rt EEE
pb————————— +

| 8 | ['pelix.ipopo.core'] | Bundle (ID=1, Name=pelix.ipopo.core) L
] 0 |

e et B e it
st —————— +

$ sd 8
ID. .t 8
Rank..........: 0
Specifications: ['pelix.ipopo.core']
Bundle........: Bundle(ID=1, Name=pelix.ipopo.core)
Properties....:
objectClass = ['pelix.ipopo.core']
service.id = 8
service.ranking = 0

Bundles using this service:
Bundle (ID=4, Name=pelix.shell.ipopo)

12 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

iPOPO Commands

iPOPO provides a set of commands to handle the components and their factories:

Command | Description

factories Lists registered component factories

factory Prints the details of a factory

instances Lists components instances

instance Prints the details of a component

waiting Lists the components waiting for an handler
instantiate Starts a new component instance

kill Kills a component

retry Retry the validation of a component

This snippets installs the pelix.shell. remote bundle and instantiate a new remote shell component:

$ install pelix.shell.remote

Bundle ID: 12

$ start 12

Starting bundle 12 (pelix.shell.remote)...
$ factories

o e +
| Factory | Bundle |
+ =+ +
| ipopo-remote-shell-factory | Bundle (ID=12, Name=pelix.shell.remote) |
e o +
| ipopo-shell-commands—-factory | Bundle (ID=4, Name=pelix.shell.ipopo) |
e e et +
2 factories available

$ instantiate ipopo-remote-shell-factory rshell pelix.shell.address=0.0.0.0 pelix.
—shell.port=9000
Component 'rshell' instantiated.

A remote shell as been started on port 9000 and can be accessed using Netcat:

bash$ nc localhost 9000

% Pelix Shell prompt =x

iPOPO Remote Shell

The remote shell gives access to the same commands as the console UI. Note that an XMPP version of the shell also
exists.

To stop the remote shell, you have to kill the component:

$ kill rshell
Component 'rshell' killed.

Finally, to stop the shell, simply run the exit command or press Ct r1+D.

3.3. Quickstart 13

iPOPO Documentation, Release 0.7.0

3.3.2 Hello World!

In this section, we will create a service provider and its consumer using iPOPO. The consumer will use the provider
to print a greeting message as soon as it is bound to it. To simplify this first sample, the consumer can only be bound
to a single service and its life-cycle is highly tied to the availability of this service.

Here is the code of the provider component, which should be store in the provider module (provider.py). The
component will provide a service with of the hello.world specification.

from pelix.ipopo.decorators import ComponentFactory, Provides, Instantiate

Define the component factory, with a given name
@ComponentFactory ("service-provider—factory")
Defines the service to provide when the component is active
@Provides ("hello.world")
A component must be instantiated as soon as the bundle is active
@Instantiate ("provider")
Don't forget to inherit from object, for Python 2.x compatibility
class Greetings (object):

def hello(self, name="World"):

print ("Hello, ", name, "!")

Start a Pelix shell like shown in the previous section, then install and start the provider bundle:

*% Pelix Shell prompt =x
$ install provider
Bundle ID: 12

$ start 12
Starting bundle 12 (provider)...
$

The consumer will require the hello.world service and use it when it is validated, i.e. once this service has been
injected. Here is the code of this component, which should be store in the consumer module (consumer . py).

from pelix.ipopo.decorators import ComponentFactory, Requires, Instantiate, \
Validate, Invalidate

Define the component factory, with a given name
@ComponentFactory ("service-consumer—factory")
Defines the service required by the component to be active
The service will be injected in the '_svc' field
QRequires ("_svc", "hello.world")
A component must be instantiated as soon as the bundle is active
@Instantiate ("consumer")
Don't forget to inherit from object, for Python 2.x compatibility
class Consumer (object) :
@Validate
def validate(self, context):
print ("Component validated, calling the service...")
self._svc.hello ("World")
print ("Done.")

@Invalidate
def invalidate(self, context):
print ("Component invalidated, the service is gone")

Install and start the consumer bundle in the active Pelix shell and play with the various commands described in the
previous section:

14 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

$ install consumer

Bundle ID: 13

$ start 13

Starting bundle 13 (consumer)...

Component validated, calling the service...
Hello, World !

Done.

$ update 12

Updating bundle 12 (provider)...

Component invalidated, the service is gone
Component validated, calling the service...
Hello, World !

Done.

$ uninstall 12

Uninstalling bundle 12 (provider)...
Component invalidated, the service is gone

3.3.3 Hello from somewhere!

This section reuses the bundles written in the Hello World sample, and install them in two distinct frameworks. To
achieve that, we will use the Pelix Remote Services, a set of bundles intending to share services across multiple Pelix
frameworks. A reference card provides more information about this feature.

Core bundles

First, we must install the core bundles of the remote services implementation: the Imports Registry (pelix.remote.
registry) and the Exports Dispatcher (pelix.remote.dispatcher). Both handle the description of the
shared services, not their link with the framework: it will be the job of discovery and transport providers. The
discovery provider we will use requires to access the content of the Exports Dispatcher of the frameworks it finds,
through HTTP requests. A component, the dispatcher servlet, must therefore be instantiate to answer to those requests:

bash$ python -m pelix.shell

% Pelix Shell prompt =x

$ install pelix.remote.registry

Bundle ID: 11

$ start 11

Starting bundle 11 (pelix.remote.registry)...

$ install pelix.remote.dispatcher

Bundle ID: 12

$ start 12

Starting bundle 12 (pelix.remote.dispatcher)...
$ instantiate pelix-remote-dispatcher-servlet-factory dispatcher-servlet
Component 'dispatcher-servlet' instantiated.

The protocols we will use for discovery and transport depends on an HTTP server. As we are using two framework on
the same machine, don’t forget to use different HTTP ports for each framework:

$ install pelix.http.basic

Bundle ID: 13

$ start 13

Starting bundle 13 (pelix.http.basic)...

$ instantiate pelix.http.service.basic.factory httpd pelix.http.port=8000
INFO:httpd:Starting HTTP server: [0.0.0.0]:8000

(continues on next page)

3.3. Quickstart 15

iPOPO Documentation, Release 0.7.0

(continued from previous page)

INFO:httpd:HTTP server started: [0.0.0.0]:8000
Component 'httpd' instantiated.

The dispatcher serviet will be discovered by the newly started HTTP server and will be able to answer to clients.

Discovery and Transport

Next, it is necessary to setup the remote service discovery layer. Here, we’ll use a Pelix-specific protocol based on
UDP multicast packets. By default, this protocol uses the UDP port 42000, which must therefore be accessible on any
machine providing or consuming a remote service.

Start two Pelix framework with their shell and, in each one, install the pelix.remote.discovery.multicast
bundle then instantiate the discovery component:

$ install pelix.remote.discovery.multicast

Bundle ID: 14

$ start 14

Starting bundle 14 (pelix.remote.discovery.multicast)...

$ instantiate pelix-remote-discovery-multicast-factory discovery
Component 'discovery' instantiated.

Finally, you will have to install the transport layer that will be used to send requests and to wait for their responses.
Here, we’ll use the JSON-RPC protocol (pelix.remote. json_rpc), which is the easiest to use (e.g. XML-RPC
has problems handling dictionaries of complex types). Transport providers often require to instantiate two components:
one for the export and one for the import. This allows to instantiate the export part only, avoiding every single
framework to know about all available services.

$ install pelix.remote.json_rpc Bundle ID: 15 $ start 15 Starting bundle 15 (pelix.remote.json_rpc). ..
$ instantiate pelix-jsonrpc-importer-factory importer Component ‘importer’ instantiated. $ instantiate
pelix-jsonrpc-exporter-factory exporter Component ‘exporter’ instantiated.

Now, the frameworks you ran have all the necessary bundles and services to detect and use the services of their peers.

Export a service

Exporting a service is as simple as providing it: just add the service.exported.interfaces property while
registering it and will be exported automatically. To avoid typos, this property is defined in the pelix.remote.
PROP_EXPORTED_INTERFACES constant. This property can contain either a list of names of interfaces/contracts
or a star () to indicate that all services interfaces are exported.

Here is the new version of the hello world provider, with the export property:

from pelix.ipopo.decorators import ComponentFactory, Provides, \
Instantiate, Property
from pelix.remote import PROP_EXPORTED_INTERFACES

@ComponentFactory ("service-provider—-factory")
@Provides ("hello.world")
Here 1s the new property, to authorize the export
@Property ('_export_itfs', PROP_EXPORTED_INTERFACES, '+')
@Instantiate ("provider")
class Greetings (object):

def hello(self, name="World"):

print ("Hello, ", name, "!")

16 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

That’s all!

Now you can install this provider in a framework, using:

$ install provider

Bundle ID: 16

$ start 16

Starting bundle 16 (provider)...

When installing a consumer in another framework, it will see the provider and use it:

$ install consumer

Bundle ID: 16

$ start 16

Component validated, calling the service...
Done.

You should then see the greeting message (Hello, World !) in the shell of the provider that has been used by the
consumer.

3.4 Tutorials

This section provides tutorials for various parts of iPOPO.

3.4.1 iPOPO in 10 minutes

Authors Shadi Abras, Thomas Calmant

This tutorial presents how to use the iPOPO framework and its associated service-oriented component model. The
concepts of the service-oriented component model are introduced, followed by a simple example that demonstrates
the features of iPOPO. This framework uses decorators to describe components.

Introduction

iPOPO aims to simplify service-oriented programming on OSGi frameworks in Python language; the name iPOPO
is an abbreviation for injected POPO, where POPO would stand for Plain Old Python Object. The name is in fact a
simple modification of the Apache iPOJO project, which stands for injected Plain Old Java Object

iPOPO provides a new way to develop OSGi/iPOJO-like service components in Python, simplifying service com-
ponent implementation by transparently managing the dynamics of the environment as well as other non-functional
requirements. The iPOPO framework allows developers to more clearly separate functional code (i.e. POPOs) from
the non-functional code (i.e. dependency management, service provision, configuration, etc.). At run time, iPOPO
combines the functional and non-functional aspects. To achieve this, iPOPO provides a simple and extensible service
component model based on POPOs.

Basic concepts

iPOPO is separated into two parts:
* Pelix, the underlying bundle and service registry
* iPOPO, the service-oriented component framework

It also defines three major concepts:

3.4. Tutorials 17

http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html

iPOPO Documentation, Release 0.7.0

* A bundle is a single Python module, i.e. a . py file, that is loaded using the Pelix API.

* A service is a Python object that is registered to service registry using the Pelix API, associated to a set of
specifications and to a dictionary of properties.

* A component is an instance of component factory, i.e. a class manipulated by iPOPO decorators. Those decora-
tors injects information into the class that are later used by iPOPO to manage the components. Components are
defined inside bundles.

Simple example

In this tutorial we will present how to:
* Publish a service
* Require a service

¢ Use lifecycle callbacks to activate and deactivate components

Presentation of the Spell application

To illustrate some of iPOPO features, we will implement a very simple application. Three bundles compose this
application:

* A bundle that defines a component implementing a dictionary service (an English and a French dictionaries).
* One with a component requiring the dictionary service and providing a spell checker service.

* One that defines a component requiring the spell checker and providing a user line interface.

The spell dictionary components provide the spell_dictionary_service specification. The spell checker
provides a spell_checker_service specification.

Preparing the tutorial

The example contains several bundles:

¢ spell_dictionary_EN.py defines a component that implements the Dictionary service, containing some English
words.

* spell_dictionary_FR.py defines a component that implements the Dictionary service, containing some French
words.

* spell_checker.py contains an implementation of a Spell Checker. The spell checker requires a dictionary service
and checks if an input passage is correct, according to the words contained in the wished dictionary.

* spell_client.py provides commands for the Pelix shell service. This component uses a spell checker service. The
user can interact with the spell checker with this command line interface.

Finally, a main_pelix_launcher.py script starts the Pelix framework. It is not considered as a bundle as it is not loaded
by the framework, but it can control the latter.

18 Chapter 3. User’s Guide

../_static/tutorials/spell_checker/spell_dictionary_EN.py
../_static/tutorials/spell_checker/spell_dictionary_FR.py
../_static/tutorials/spell_checker/spell_checker.py
../_static/tutorials/spell_checker/spell_client.py
../_static/tutorials/spell_checker/main_pelix_launcher.py

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

iPOPO Documentation, Release 0.7.0

The English dictionary bundle: Providing a service

The spell_dictionary_EN bundle is a simple implementation of the Dictionary service. It contains few English
words.

#!/usr/bin/python

—— Content-Encoding: UTF-8 ——

mrmumn

This bundle provides a component that is a simple implementation of the
Dictionary service. It contains some English words.

mon

1POPO decorators
from pelix.ipopo.decorators import ComponentFactory, Property, Provides, \
Validate, Invalidate, Instantiate

Name the 1POPO component factory

@ComponentFactory ("spell_dictionary_en_factory")

This component provides a dictionary service

@Provides ("spell_dictionary_service")

It is the English dictionary

@Property ("_language", "language", "EN")

Automatically instantiate a component when this factory is loaded
@Instantiate ("spell_dictionary_en_instance")

class SpellDictionary (object) :

mmn

Implementation of a spell dictionary, for English language.

mmn

def _ init_ (self):

mon

Declares members, to respect PEP-8.
mimnm

self.dictionary = None

@vValidate
def validate(self, context):
mmn
The component is validated. This method is called right before the
provided service 1s registered to the framework.
mmmn
All setup should be done here
self.dictionary = {"hello", "world", "welcome", "to", "the", "ipopo",
"tutorial"}
print ('An English dictionary has been added')

@Invalidate
def invalidate(self, context):

mon

The component has been invalidated. This method is called right after
the provided service has been removed from the framework.

mon

self.dictionary = None

def check_word(self, word):

mon

(continues on next page)

3.4. Tutorials 19

53

54

55

56

57

58

59

20

21

22

23

24

25

iPOPO Documentation, Release 0.7.0

(continued from previous page)

Determines 1if the given word is contained in the dictionary.

@param word the word to be checked.

@return True if the word is in the dictionary, False otherwise.
mmn

word = word.lower () .strip()

return not word or word in self.dictionary

* The @Component decorator is used to declare an iPOPO component. It must always be on top of other
decorators.

* The @Provides decorator indicates that the component provides a service.

e The @Instantiate decorator instructs iPOPO to automatically create an instance of our component. The
relation between components and instances is the same than between classes and objects in the object-oriented
programming.

* The @Property decorator indicates the properties associated to this component and to its services (e.g. French
or English language).

¢ The method decorated with @vValidate will be called when the instance becomes valid.

e The method decorated with @Invalidate will be called when the instance becomes invalid (e.g. when one
its dependencies goes away) or is stopped.

For more information about decorators, see :ref:refcard_decorators.

The French dictionary bundle: Providing a service

The spell_dictionary_FR bundle is a similar to the spell_dictionary_EN one. It only differs in the
language component property, as it checks some French words declared during component validation.

#!/usr/bin/python

—— Content-Encoding: UTF-8 —-—

mmn

This bundle provides a component that is a simple implementation of the
Dictionary service. It contains some French words.

mn

1POPO decorators
from pelix.ipopo.decorators import ComponentFactory, Property, Provides, \
Validate, Invalidate, Instantiate

Name the 1iPOPO component factory

@ComponentFactory ("spell_dictionary_ fr factory")

This component provides a dictionary service

@Provides ("spell_dictionary_service")

It is the French dictionary

@Property ("_language", "language", "FR")

Automatically instantiate a component when this factory is loaded
@Instantiate ("spell _dictionary_fr instance")

class SpellDictionary (object) :

mmn

Implementation of a spell dictionary, for French language.
mmwn

(continues on next page)

20 Chapter 3. User’s Guide

26

27

28

29

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

56

57

59

iPOPO Documentation, Release 0.7.0

(continued from previous page)

def init__ (self):

mnn

Declares members, to respect PEP-8.

moon

self.dictionary = None

@vValidate
def validate(self, context):
mmn
The component is validated. This method is called right before the
provided service 1is registered to the framework.
mmn
All setup should be done here
self.dictionary = {"bonjour", "le", "monde", "au", "a", "ipopo",
"tutoriel"}
print ('A French dictionary has been added')

@Invalidate

def invalidate(self, context):
The component has been invalidated. This method is called right after
the provided service has been removed from the framework.

mnn

self.dictionary = None

def check_word(self, word):

mon

Determines 1if the given word 1is contained in the dictionary.

@param word the word to be checked.

@return True if the word is in the dictionary, False otherwise.
mmn

word = word.lower () .strip()

return not word or word in self.dictionary

It is important to note that the iPOPO factory name must be unique in a framework: only the first one to be registered
with a given name will be taken into account. The name of component instances follows the same rule.

The spell checker bundle: Requiring a service

The spell_checker bundle aims to provide a spell checker service. However, to serve this service, this imple-
mentation requires a dictionary service. During this step, we will create an iPOPO component requiring a Dictionary
service and providing the Spell Checker service.

#!/usr/bin/python

—-— Content-Encoding: UTF-8 —-—

The spell_checker component uses the dictionary services to check the spell of
a given text.

mmwn

1POPO decorators
from pelix.ipopo.decorators import ComponentFactory, Provides, \
Validate, Invalidate, Requires, Instantiate, BindField, UnbindField

(continues on next page)

3.4. Tutorials 21

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

iPOPO Documentation, Release 0.7.0

(continued from previous page)

Standard library
import re

Name the component factory
@ComponentFactory ("spell checker_factory")
Provide a Spell Checker service
@Provides ("spell_checker_service")
Consume all Spell Dictionary services available (aggregate them)
QRequires ("_spell dictionaries", "spell dictionary_service", aggregate=True)
Automatic instantiation
@Instantiate ("spell_ checker_instance")
class SpellChecker (object) :
A component that uses spell dictionary services to check the spelling of
given texts.

mmn

def _ init_ (self):

mon

Define class members

mmn

the spell dictionary service, injected 1list
self._spell_dictionaries = []

the list of available dictionaries, constructed
self.languages = {}

list of some punctuation marks could be found in the given passage,
internal
self.punctuation_marks = None

@BindField('_spell dictionaries')
def bind_dict (self, field, service, svc_ref):
Called by iPOPO when a spell dictionary service 1is bound to this
component
Extract the dictionary language from its properties
language = svc_ref.get_property('language')

Store the service according to its language
self.languages[language] = service

@UnbindField('_spell _dictionaries')
def unbind_dict (self, field, service, svc_ref):

mon

Called by iPOPO when a dictionary service has gone away

mon

Extract the dictionary language from its properties
language = svc_ref.get_property ('language')

Remove it from the computed storage
The injected list of services 1is updated by 1POPO
del self.languages|[language]

@vValidate

(continues on next page)

22 Chapter 3. User’s Guide

69

70

71

2

73

74

75

76

77

78

79

80

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

iPOPO Documentation, Release 0.7.0

(continued from previous page)

def validate(self, context):
This spell checker has been validated, i.e. at least one dictionary
service has been bound.
Set up internal members
self.punctuation_marks = (', "', ';', '.', '?", Y, AR
print ('A spell checker has been started')

@Invalidate
def invalidate(self, context):

mnn

The component has been invalidated
self.punctuation_marks = None
print ('A spell checker has been stopped')

def check(self, passage, language="EN"):

mmon

Checks the given passage for misspelled words.

:param passage: the passage to spell check.

:param language: language of the spell dictionary to use

:return: An array of misspelled words or null if no words are misspelled
:raise KeyError: No dictionary for this language

list of words to be checked in the given passage

without the punctuation marks

checked_list = re.split("([!,?.:;])", passage)

try:
Get the dictionary corresponding to the requested language
dictionary = self.languages|[language]

except KeyError:
Not found
raise KeyError ('Unknown language: {0}'.format (language))

Do the job, calling the found service
return [word for word in checked_list
if word not in self.punctuation_marks
and not dictionary.check_word (word)]

* The @Requires decorator specifies a service dependency. This required service is injected in a local variable
in this bundle. Its aggregate attribute tells iPOPO to collect the list of services providing the required
specification, instead of the first one.

e The @BindField decorator indicates that a new required service bounded to the platform.

¢ The @UnbindField decorator indicates that one of required service has gone away.

The spell client bundle

The spell_client bundle contains a very simple user interface allowing a user to interact with a spell checker
service.

#!/usr/bin/python
—— Content-Encoding: UTF-8 —-

(continues on next page)

3.4. Tutorials 23

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

iPOPO Documentation, Release 0.7.0

(continued from previous page)

mwn

This bundle defines a component that consumes a spell checker.
It provides a shell command service, registering a "spell" command that can be
used in the shell of Pelix.

It uses a dictionary service to check for the proper spelling of a word by check
for its existence in the dictionary.

mmwn

1POPO decorators
from pelix.ipopo.decorators import ComponentFactory, Provides, \
Validate, Invalidate, Requires, Instantiate

Specification of a command service for the Pelix shell
from pelix.shell import SHELL_COMMAND_SPEC

Name the component factory
@ComponentFactory ("spell client_factory")
Consume a single Spell Checker service
QRequires ("_spell checker", "spell_ checker_service")
Provide a shell command service
@Provides (SHELL_COMMAND_SPEC)
Automatic instantiation
@Instantiate ("spell_client_instance")
class SpellClient (object):
mmwn
A component that provides a shell command (spell.spell), using a

Spell Checker service.
mmwn

def _ init_ (self):

mon

Defines class members

mon

the spell checker service
self._spell_checker = None

@vValidate
def validate(self, context):

mmomn
Component validated, just print a trace to visualize the event.

Between this call and the call to invalidate, the _spell_checker member

will point to a valid spell checker service.
mmnm

print ('A client for spell checker has been started')

@Invalidate
def invalidate(self, context):

mon

Component invalidated, just print a trace to visualize the event

mon

print ('A spell client has been stopped')

def get_namespace (self):

mon

Retrieves the name space of this shell command provider.

(continues on next page)

24 Chapter 3. User’s Guide

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

85

86

88

89

90

91

92

93

94

95

96

97

98

iPOPO Documentation, Release 0.7.0

(continued from previous page)

Look at the shell tutorial for more information.

mon

return "spell"

def get_methods (self):
mmmn
Retrieves the list of (command, method) tuples for all shell commands
provided by this component.
Look at the shell tutorial for more information.

mon

return [("spell", self.spell)]

def spell(self, io_handler):
Reads words from the standard input and checks for their existence
from the selected dictionary.

:param io_handler: A utility object given by the shell to interact with
the user.

Request the language of the text to the user

passage = None

language = io_handler.prompt ("Please enter your language, EN or FR: ")

language = language.upper ()

while passage != 'quit':
Request the text to check
passage = io_handler.prompt (
"Please enter your paragraph, or 'quit' to exit:\n")

if passage and passage != 'quit':

A text has been given: call the spell checker, which have been
injected by 1iPOPO.
misspelled_words = self._spell_checker.check (passage, language)
if not misspelled_words:

io_handler.write_line ("All words are well spelled!")
else:

io_handler.write_line(

"The misspelled words are: {0}", misspelled_words)

The component defined here implements and provides a shell command service, which will be consumed by the Pelix
Shell Core Service. It registers a spell shell command.

Main script: Launching the framework

‘We have all the bundles required to start playing with the application. To run the example, we have to start Pelix, then
all the required bundles.

#!/usr/bin/python
—-— Content-Encoding: UTF-8 ——

mmwn

Starts a Pelix framework and installs the Spell Checker bundles
mmn

Pelix framework module and utility methods

(continues on next page)

3.4. Tutorials 25

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

iPOPO Documentation, Release 0.7.0

(continued from previous page)

import pelix.framework
from pelix.utilities import use_service

Standard library
import logging

def main() :

mmn

Starts a Pelix framework and waits for it to stop

mmn

Prepare the framework, with iPOPO and the shell console
Warning: we only use the first argument of this method,

framework = pelix.framework.create_framework ((
1POPO
"pelix.ipopo.core",
Shell core (engine)
"pelix.shell.core",
Text console
"pelix.shell.console"))

Start the framework, and the pre-—-installed bundles

framework.start ()

a list of bundles

Get the bundle context of the framework, i.e. the link between the

framework starter and its content.
context = framework.get_bundle_context ()

Start the spell dictionary bundles, which provide the dictionary services

context.install _bundle ("spell dictionary_EN").start ()
context.install_bundle ("spell_dictionary_FR") .start ()

Start the spell checker bundle, which provides the spell checker service.

context.install_bundle ("spell_checker") .start ()

Sample usage of the spell checker service

1. get its service reference, that describes the service itself
ref_config = context.get_service_reference ("spell_ checker_ service")

2. the use_service method allows to grab a service and to use it inside a
with block. It automatically releases the service when exiting the block,

even 1f an exception was raised

with use_service (context, ref_config) as svc_config:
Here, svc_config points to the spell checker service

passage = "Welcome to our framwork iPOPO"
print ("1. Testing Spell Checker:", passage)
misspelled_words = svc_config.check (passage)

print ("> Misspelled _words are:", misspelled_words)

Start the spell client bundle, which provides a shell command

context.install bundle ("spell client") .start ()

Wait for the framework to stop
framework.wait_for_stop ()

Classic entry point...

(continues on next page)

26

Chapter 3. User’s Guide

65

66

67

iPOPO Documentation, Release 0.7.0

(continued from previous page)

if _ name_ == "_ _main__ ":
logging.basicConfig(level=logging.DEBUG)
main ()

Running the application

Launch the main_pelix_launcher.py script. When the framework is running, type in the console: spell to
enter your language choice and then your passage.

Here is a sample run, calling python main_pelix_launcher.py:

INFO:pelix.shell.core:Shell services registered

An English dictionary has been added

% Pelix Shell prompt =x

A French dictionary has been added

A dictionary checker has been started

1. Testing Spell Checker: Welcome to our framwork iPOPO
> Misspelled_words are: ['our', 'framwork']

A client for spell checker has been started

$ spell

Please enter your language, EN or FR: FR
Please enter your paragraph, or 'quit' to exit:
Bonjour le monde !

All words are well spelled !

Please enter your paragraph, or 'quit' to exit:
quit

$ spell

Please enter your language, EN or FR: EN
Please enter your paragraph, or 'quit' to exit:
Hello, world !

All words are well spelled !

Please enter your paragraph, or 'quit' to exit:
Bonjour le monde !

The misspelled words are: ['Bonjour', 'le', 'monde']
Please enter your paragraph, or 'quit' to exit:

quit

$ quit

Bye !

A spell client has been stopped
INFO:pelix.shell.core:Shell services unregistered

3.5 Reference Cards

This section contains some short introductions to the services provided by Pelix/iPOPO.

3.5.1 Bundles

A bundle is a Python module installed using the Pelix Framework instance or a BundleContext object.

Each bundle is associated to an ID, an integer that is unique for a framework instance, and to a symbolic name, i.e. its
module name. The framework itself is seen as the bundle which ID is always 0.

3.5. Reference Cards 27

iPOPO Documentation, Release 0.7.0

Because installing a bundle is in fact importing a module, no code should be written to be executed at module-level
(except the definition of constants, the import of dependencies, ...). Initialization must be done in the bundle activator

(see below).

Life-cycle

Unlike a module, a bundle has a life-cycle and can be in one of the following states:

Install

Installed

Uninstall StE” STP

Active

———

)
— Uninstalled

State Description

INSTALLED The Python module has been correctly imported, the bundle goes to the RESOLVED state

RESOLVED The bundle has not been started yet or has been stopped

STARTING The start () method of the bundle activator is being called (transition to ACTIVE or RE-
SOLVED)

ACTIVE The bundle activator has been called and didn’t raise any error

STOPPING The stop () method of the bundle activator is being called (transition to RESOLVED)

UNIN- The bundle has been removed from the framework (only visible by remaining references to the

STALLED bundle)

The update process of a bundle is simple:

« if it was active, the bundle is stopped: other bundles are notified of this transition, and its services are unregis-

tered

* the module is updated, using the imp.reload() method

— if the update fails, the previous version of the module is kept, but the bundle is not restarted.

« if the update succeeds and the bundle was active, the bundle its restarted

28

Chapter 3. User’s Guide

https://docs.python.org/3/library/imp.html#imp.reload

iPOPO Documentation, Release 0.7.0

Bundle Activator

A bundle activator is a class defining the start () and stop () methods, which are called by the framework accord-
ing to the bundle life-cycle.

class pelix.constants.BundleActivator
This decorator must be applied to the class that will be notified of the life-cycle events concerning the bundle.
A bundle can only have one activator, which must implement the following methods:

start (context)
This method is called when the bundle is in STARTING state. If this method doesn’t raise an exception,
the bundle goes immediately into the ACTIVE state. If an exception is raised, the bundle is stopped.

During the call of this method, the framework is locked. It is therefore necessary that this method returns
as soon as possible: all time-consuming tasks should be executed in a new thread.

stop (context)
This method is called when the bundle is in STOPPING state. After this method returns or raises an
exception, the bundle goes into the RESOLVED state.

All resources consumed by the bundle should be released before this method returns.

A class is defined as the bundle activator if it is decorated with @BundleActivator, as shown in the following
snippet:

import pelix.constants

@pelix.constants.BundleActivator
class Activator (object):

mon

Bundle activator template

mmn

def start(self, context):

mmwn

Bundle is starting
mmn

print ("Start")

def stop(self, context):

mon

Bundle is stopping

mmn

print ("Stop")

Note: The previous declaration of the activator, i.e. declaring an act ivator module member, is deprecated and its
support will be removed in version 1.0.

Bundle Context

A context is associated to each bundle, and allows it to interact with the framework. It is unique for a bundle until it is
removed from the framework. It must be used to register and to look up services, to request framework information,
etc.

All the available methods are described in the API chapter. Here are the most used ones concerning the handling of
bundles:

3.5. Reference Cards 29

iPOPO Documentation, Release 0.7.0

class pelix.framework.BundleContext (framework, bundle)
The bundle context is the link between a bundle and the framework. It is unique for a bundle and is created by

the framework once the bundle is installed.
Parameters
» framework — Hosting framework

¢ bundle - The associated bundle

add_bundle_listener (listener)
Registers a bundle listener, which will be notified each time a bundle is installed, started, stopped or

updated.
The listener must be a callable accepting a single parameter:

* event — The description of the event (a BundleEvent object).

Parameters listener — The bundle listener to register

Returns True if the listener has been registered, False if it already was

get_bundle (bundle_id=None)
Retrieves the Bundle object for the bundle matching the given ID (int). If no ID is given (None), the

bundle associated to this context is returned.

Parameters bundle_id — A bundle ID (optional)
Returns The requested Bundle object
Raises BundleException — The given ID doesn’t exist or is invalid

get_bundles ()
Returns the list of all installed bundles

Returns A list of Bundle objects

install_bundle (name, path=None)
Installs the bundle (module) with the given name.

If a path is given, it is inserted in first place in the Python loading path (sys.path). All modules loaded
alongside this bundle, i.e. by this bundle or its dependencies, will be looked after in this path in priority.

Note: Before Pelix 0.5.0, this method returned the ID of the installed bundle, instead of the Bundle object.

Warning: The behavior of the loading process is subject to changes, as it does not allow to safely run
multiple frameworks in the same Python interpreter, as they might share global module values.

Parameters
¢ name — The name of the bundle to install

* path — Preferred path to load the module (optional)

Returns The Bundle object of the installed bundle

Raises BundleException — Error importing the module or one of its dependencies

install_package (path, recursive=False)
Installs all the modules found in the given package (directory). It is a utility method working like

install_visiting (), with a visitor accepting every module found.

30 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

Parameters
» path — Path of the package (folder)
e recursive — If True, installs the modules found in sub-directories

Returns A 2-tuple, with the list of installed bundles (Bundle) and the list of the names of the
modules which import failed.

Raises ValueError — The given path is invalid

install_visiting (path, visitor)
Looks for modules in the given path and installs those accepted by the given visitor.

The visitor must be a callable accepting 3 parameters:
¢ fullname — The full name of the module
* is_package — If True, the module is a package

* module_path — The path to the module file

Parameters
* path — Root search path (folder)
e visitor — The visiting callable

Returns A 2-tuple, with the list of installed bundles (Bundle) and the list of the names of the
modules which import failed.

Raises ValueError — Invalid path or visitor

remove_bundle_ listener (listener)
Unregisters the given bundle listener

Parameters listener — The bundle listener to remove

Returns True if the listener has been unregistered, False if it wasn’t registered

3.5.2 Services
A service is an object that is registered to the framework service registry, associated with a set of specifications it
implements and to properties.

The bundle that registers the service must keep the ServiceRegistration object returned by the framework.
It allows to update the service properties and to unregister the service. This object shall not be accessible by other
bundles/services. Finally, all services must be unregistered when their bundle is stopped.

A consumer can look for a service in the framework that matches a specification and a set of properties. The framework
will return a ServiceReference object, which provides a read-only access to the description of its associated
service: properties, registering bundle, bundles using it. . .

Properties

When registered and while it is available, the properties of a service can be set and updated by its provider.

Although, some properties are reserved for the framework; each service has at least the following properties:

Name Type Description
objectClass | list of str | List of the specifications implemented by this service
service.id int Identifier of the service. Unique in a framework instance

3.5. Reference Cards 31

iPOPO Documentation, Release 0.7.0

The framework also uses the following property to sort the result of a service look up:

Name Type | Description
service.ranking | int The rank/priority of the service. The lower the rank, the more priority

Service Factory

Warning: Service factories are a very recent feature of iPOPO and might be prone to bugs: please report any bug
encounter on the project GitHub.

A service factory is a pseudo-service with a specific flag, which can create individual instances of service objects for
different bundles. Sometimes a service needs to be differently configured depending on which bundle uses the service.
For example, the log service needs to be able to print the logging bundle’s id, otherwise the log would be hard to read.

A service factory is registered in exactly the same way as a normal service, using register._service (), with the
factory argument set to True‘*. The only difference is an indirection step before the actual service object is handed
out.

The client using the service need not, and should not, care if a service is generated by a factory or by a plain object.

A simple service factory example

class ServiceInstance:
def _ init_ (self, wvalue):
self._ value = value

def cleanup(self):
self.__value = None

def get_value (self):
return self._ value

class ServiceFactory:
def _ init_ (self):
Bundle —-> Instance
self._instances = {}

def get_service(self, bundle, registration):
mmrn

Called each time a new bundle requires the service
instance = ServiceInstance (bundle.get_bundle_id())
self._instances[bundle] = instance

return instance

def unget_service(self, bundle, registration):
Called when a bundle has released all its references
to the service
Release connections,
self._instances.pop (bundle) .cleanup ()

bundle_context.register_service (
"sample.factory", ServiceFactory (), {}, factory=True)

32 Chapter 3. User’s Guide

https://github.com/tcalmant/ipopo/issues

iPOPO Documentation, Release 0.7.0

Note: The framework will cache generated service objects. Thus, at most one service can be generated per client
bundle.

Prototype Service Factory

Warning: Prototype Service factories are a very recent feature of iPOPO and might be prone to bugs: please
report any bug encounter on the project GitHub.

A prototype service factory is a pseudo-service with a specific flag, which can create multiple instances of service
objects for different bundles.

Each time a bundle requires the service, the prototype service factory is called and can return a different instance. When
called, the framework gives the factory the Bunde object requesting the service and the ServiceRegistration
of the requested service. This allows a single factory to be registered for multiple services.

Note that there is no Prototype Service Factory implemented in the core Pelix/iPOPO Framework (unlike the Log
Service simple service factory).

A Prototype Service Factory is registered in exactly the same way as a normal service, using
register_service (), with the prototype argument set to True.

A simple prototype service factory example:

class ServicelInstance:
def _ init_ (self, wvalue):
self.__value = value

def cleanup(self):
self.__value = None

def get_value(self):
return self._ value

class PrototypeServiceFactory:
def _ init_ (self):
Bundle —-> [instances]
self._instances = {}

def get_service(self, bundle, registration):

mon

Called each time " ‘get_service() = 1is called
bnd_instances = self._instances.setdefault (bundle, [1])
instance = Servicelnstance (

[bundle.get_bundle_id (), len(bnd_instances)])
bnd_instances.append (instance)
return instance

def unget_service_instance(self, bundle, registration, service):
mmn

Called when a bundle releases an instance of the service

mn

bnd_instances[bundle] .remove (service)

(continues on next page)

3.5. Reference Cards 33

https://github.com/tcalmant/ipopo/issues

iPOPO Documentation, Release 0.7.0

(continued from previous page)

service.cleanup ()

def unget_service(self, bundle, registration):
mmomn
Called when a bundle has released all its references
to the service

mmwn

Release global resources...

When this method is called, all instances will have been cleaned
up individually in " unget_service_instance
if len(self._instances.pop (bundle)) != 0:

raise ValueError ("Should never happen")

bundle_context.register_service (
"sample.proto", PrototypeServiceFactory (), {}, factory=True)

Note: A Prototype Service Factory is considered as a Service Factory, hence both is factory () and
is_prototype () will return True for this kind of service

API
The service provider has access to the ServiceRegistration object created by the framework when
register_service () is called.

class pelix.framework.ServiceRegistration (framework, reference, propetrties, up-

. . . . date_callback)
Represents a service registration object

Parameters
* framework — The host framework
* reference - A service reference
* properties — A reference to the ServiceReference properties dictionary object
* update_callback — Method to call when the sort key is modified

get_reference ()
Returns the reference associated to this registration

Returns A ServiceReference object

set_properties (properties)
Updates the service properties

Parameters properties — The new properties
Raises TypeError — The argument is not a dictionary

unregister ()
Unregisters the service

Consumers can access the service using its ServiceReference object, unique and constant for each service. This
object can be retrieved using the BundleContext and its get_service_referencex methods. A consumer
can check the properties of a service through this object, before consuming it.

34 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

class pelix.framework.ServiceReference (bundle, properties)
Represents a reference to a service

Parameters
* bundle - The bundle registering the service
* properties — The service properties
Raises BundleException — The properties doesn’t contain mandatory entries

get_bundle ()
Returns the bundle that registered this service

Returns the bundle that registered this service

get_properties ()
Returns a copy of the service properties

Returns A copy of the service properties

get_property (name)
Retrieves the property value for the given name

Returns The property value, None if not found

get_property_keys ()
Returns an array of the keys in the properties of the service

Returns An array of property keys.

get_using bundles ()
Returns the list of bundles that use this service

Returns A list of Bundle objects

is_factory ()
Returns True if this reference points to a service factory

Returns True if the service provides from a factory

is_prototype ()
Returns True if this reference points to a prototype service factory

Returns True if the service provides from a prototype factory
Finally, here are the methods of the BundleContext class that can be used to handle services:

class pelix.framework.BundleContext (framework, bundle)
The bundle context is the link between a bundle and the framework. It is unique for a bundle and is created by
the framework once the bundle is installed.

Parameters
» framework — Hosting framework
¢ bundle - The associated bundle

add_service_listener (listener, ldap_filter=None, specification=None)
Registers a service listener

The service listener must have a method with the following prototype:

def service_changed(self, event):

rro

Called by Pelix when some service properties changes

(continues on next page)

3.5. Reference Cards 35

iPOPO Documentation, Release 0.7.0

(continued from previous page)

event: A ServiceEvent object

rr

#

Parameters
* listener — The listener to register

* ldap_filter - Filter that must match the service properties (optional, None to accept
all services)

* specification — The specification that must provide the service (optional, None to
accept all services)

Returns True if the listener has been successfully registered

get_all_service_references (clazz, ldap_filter=None)
Returns an array of ServiceReference objects. The returned array of ServiceReference objects contains
services that were registered under the specified class and match the specified filter expression.

Parameters
* clazz - Class implemented by the service
e ldap_filter - Service filter
Returns The sorted list of all matching service references, or None

get_service (reference)
Returns the service described with the given reference

Parameters reference — A ServiceReference object
Returns The service object itself

get_service_reference (clazz, ldap_filter=None)
Returns a ServiceReference object for a service that implements and was registered under the specified
class

Parameters
* clazz - The class name with which the service was registered.
e ldap_filter — A filter on service properties

Returns A service reference, None if not found

get_service_references (clazz, ldap._filter=None)
Returns the service references for services that were registered under the specified class by this bundle and

matching the given filter
Parameters
* clazz - The class name with which the service was registered.
* ldap_filter — A filter on service properties

Returns The list of references to the services registered by the calling bundle and matching the
filters.

register_service (clazz, service, properties, send_event=True, factory=False, prototype=False)
Registers a service

36

Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

Parameters
* clazz - Class or Classes (list) implemented by this service
* service - The service instance
* properties — The services properties (dictionary)
* send_event — If not, doesn’t trigger a service registered event
» factory - If True, the given service is a service factory

* prototype — If True, the given service is a prototype service factory (the factory argu-
ment is considered True)

Returns A ServiceRegistration object
Raises BundleException — An error occurred while registering the service

remove_service_ listener (listener)
Unregisters a service listener

Parameters listener — The service listener
Returns True if the listener has been unregistered

unget_service (reference)
Disables a reference to the service

Returns True if the bundle was using this reference, else False

3.5.3 iPOPO Components

A component is an object with a life-cycle, requiring services and providing ones, and associated to properties. The
code of a component is reduced to its functional purpose: its life-cycle, dependencies, etc. are handled by iPOPO. In
iPOPO, a component is an instance of component factory, i.e. a Python class manipulated with the iPOPO decorators.

Note: Due to the use of Python properties, all component factories must be new-style classes. It is the case of all
Python 3 classes, but Python 2.x classes must explicitly inherit from the object class.

Life-cycle

The component life cycle is handled by an instance manager created by the iPOPO service. This instance manager will
inject control methods, run-time dependencies, and will register the component services. All changes will be notified
to the component using the callback methods it decorated.

3.5. Reference Cards 37

iPOPO Documentation, Release 0.7.0

Instantiate

— Instantiated

Validate

SRR

Kill Validated —' Retry

Invalidate

<exception>

—

Erroneous

| —

SR
| Killed

State Description
INSTANTI- | The component has been instantiated. Its constructor has been called and the control methods have
ATED been injected
VALI- All required dependencies have been injected. All services provided by the component will be
DATED registered right after this method returned
KILLED The component has been invalidated and won’t be usable again
ERRO- The component raised an error during its validation. It is not destroyed and a validation can be
NEOUS retried manually

API

iPOPO components are handled through the iPOPO core service, which can itself be accessed through the Pelix API
or the utility context manager use_ipopo (). The core service provides the pelix . ipopo.core specification.

pelix.ipopo.constants.use_ipopo (bundle_context)
Utility context to use the iPOPO service safely in a “with” block. It looks after the the iPOPO service and
releases its reference when exiting the context.

Parameters bundle_context — The calling bundle context
Returns The iPOPO service
Raises BundleException — Service not found

The following snippet shows how to use this method:

from pelix.ipopo.constants import use_ipopo

... considering "context" being a BundleContext object
with use_ipopo (context) as ipopo:

y/

use the 1POPO core service with the "ipopo" variable

(continues on next page)

38 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

(continued from previous page)

ipopo.instantiate ("my.factory", "my.component",
{"some.property": [1, 2, 3], "answer": 42})

"

... out of the "with" context, the 1POPO service has been released

and shouldn't be used

Here are the most commonly used methods from the iPOPO core service to handle components and factories:

class pelix.ipopo.core._IPopoService (bundle_context)
The iPOPO registry and service

Parameters bundle_context — The iPOPO bundle context

add listener (listener)
Register an iPOPO event listener.

The event listener must have a method with the following prototype:

def handle_ipopo_event (self, event):

rr

event: A IPopoEvent object

rrr

#

Parameters listener — The listener to register
Returns True if the listener has been added to the registry
get_factories()
Retrieves the names of the registered factories
Returns A list of factories. Can be empty.

get_factory_ details (name)
Retrieves a dictionary with details about the given factory

e name: The factory name

* bundle: The Bundle object of the bundle providing the factory

* properties: Copy of the components properties defined by the factory
* requirements: List of the requirements defined by the factory

— id: Requirement ID (field where it is injected)

specification: Specification of the required service

aggregate: If True, multiple services will be injected

optional: If True, the requirement is optional

* services: List of the specifications of the services provided by components of this factory

* handlers: Dictionary of the non-built-in handlers required by this factory. The dictionary keys are

handler IDs, and it contains a tuple with:
— A copy of the configuration of the handler (0)

— A flag indicating if the handler is present or not

Parameters name — The name of a factory

3.5. Reference Cards

iPOPO Documentation, Release 0.7.0

Returns A dictionary describing the factory
Raises ValueError — Invalid factory
get_instance_details (name)
Retrieves a snapshot of the given component instance. The result dictionary has the following keys:

* name: The component name

* factory: The name of the component factory

* bundle_id: The ID of the bundle providing the component factory

* state: The current component state

* services: A {Service ID — Service reference} dictionary, with all services provided by the component

* dependencies: A dictionary associating field names with the following dictionary:

handler: The name of the type of the dependency handler

filter (optional): The requirement LDAP filter

optional: A flag indicating whether the requirement is optional or not

aggregate: A flag indicating whether the requirement is a set of services or not

binding: A list of the ServiceReference the component is bound to
* properties: A dictionary key — value, with all properties of the component. The value is converted to
its string representation, to avoid unexpected behaviors.
Parameters name — The name of a component instance
Returns A dictionary of details
Raises ValueError - Invalid component name
get_instances ()
Retrieves the list of the currently registered component instances
Returns A list of (name, factory name, state) tuples.

instantiate (factory_name, name, properties=None)
Instantiates a component from the given factory, with the given name

Parameters

e factory_ name — Name of the component factory

* name — Name of the instance to be started

* properties — Initial properties of the component instance
Returns The component instance
Raises

* TypeError — The given factory is unknown

* ValueError — The given name or factory name is invalid, or an instance with the given
name already exists

* Exception — Something wrong occurred in the factory

kill (name)
Kills the given component

40

Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

Parameters name — Name of the component to kill
Raises ValueError — Invalid component name

remove_listener (listener)
Unregister an iPOPO event listener.

Parameters listener — The listener to register
Returns True if the listener has been removed from the registry

retry_erroneous (name, properties_update=None)
Removes the ERRONEOUS state of the given component, and retries a validation

Parameters

* name — Name of the component to retry

* properties_update — A dictionary to update the initial properties of the component
Returns The new state of the component

Raises ValueError — Invalid component name

3.5.4 iPOPO Decorators

Component definition

Those decorators describe the component. They must decorate the factory class itself.

Factory definition

The factory definition decorator must be unique per class and must always be the last one executed, i.e. the top one in
the source code.

class pelix.ipopo.decorators.ComponentFactory (name=None, excluded=None)
Manipulates the component class according to a FactoryContext object filled by other decorators.

This must be the last executed decorator, i.e. the one on top of others in the source code.
It accepts the following arguments:
Parameters
* name — the name of the component factory

* excluded - the list of the IDs of the handlers which configuration must not be inherited
from a parent component class

If no factory name is given, it will be generated as ClassNameFactory, e.g. a Foo class will have the factory
name FooFactory.

The __init__ () method of a component factory must not require any parameter.

@ComponentFactory ()
class Foo (object) :
def _ init__ (self):
pass

@ComponentFactory ('my—-factory"')

(continues on next page)

3.5. Reference Cards 41

iPOPO Documentation, Release 0.7.0

(continued from previous page)

class Bar (object) :
pass

Parameters
* name — Name of the component factory
* excluded - List of IDs of handlers which configuration must not be inherited from the

parent class

class pelix.ipopo.decorators.SingletonFactory (name=None, excluded=None)
This decorator is a specialization of the ComponentFactory: it accepts the same arguments and follows the
same rule, but it allows only one instance of component from this factory at a time.

If the factory is instantiated while another already exist, a ValueError will be raised.

@SingletonFactory ()
class Foo (object) :
def init__ (self):
pass

@SingletonFactory ('my-factory')
class Bar (object) :
pass

Parameters
* name — Name of the component factory

* excluded - List of IDs of handlers which configuration must not be inherited from the
parent class

Component properties

class pelix.ipopo.decorators.Property (field, name=None, value=None)
The @Property decorator defines a component property. A property can be used to configure the component
at validation time and to expose the state of a component. Note that component properties are exposed in the
properties of the services it provides.

This decorator accepts the following parameters:
Parameters
» field - The property field in the class (can’t be None nor empty)
* name — The property name (if None, this will be the field name)
* value — The property value (None by default)
Handler ID pelix.ipopo.constants.HANDLER_PROPERTY

If no initial value is given, the value stored in the field inthe __init__ () method will be used.

Warning: In Python 2, it is required that the component class inherits ob ject for properties to work.

42 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

@ComponentFactory ()
@Property ('_answer', 'some.answer', 42)
class Foo (object) :

pass

Parameters
» field - The property field in the class (can’t be None nor empty)
* name — The property name (if None, this will be the field name)
* value — The property value (None by default)

Raises
* TypeError — Invalid argument type
* ValueError — If the name or the name is None or empty

class pelix.ipopo.decorators.HiddenProperty (field, name=None, value=None)

The @HiddenProperty decorator defines a component property which won’t be visible in the properties of
the services it provides. This kind of property is also not accessible using iPOPO reflection methods.

This decorator accepts the same parameters and follows the same rules as Property.

@ComponentFactory ()
@HiddenProperty ('_password', 'some.password', "secret")
class Foo (object) :

pass

Parameters
» field - The property field in the class (can’t be None nor empty)
* name — The property name (if None, this will be the field name)
* value — The property value (None by default)
Raises
* TypeError — Invalid argument type

* ValueError — If the name or the name is None or empty

Special properties

Note that some properties have a special meaning for iPOPO and Pelix.

Name Type | Description

instance.name str | The name of the iPOPO component instance

service.id int | The registration number of a service

service.ranking | int | The rank (priority) of the services provided by this component

@ComponentFactory ()

@Property('_name', 'instance.name') # Special property
@Property ('_value', 'my.value') # Some property
@Property ('_answer', 'the.answer', 42) # Some property, with a default value

(continues on next page)

3.5. Reference Cards 43

iPOPO Documentation, Release 0.7.0

(continued from previous page)

class Foo (object) :
def _ init_ (self):
self._name = None # This will overwritten by 1POPO
self._value = 12 # 12 will be used 1f this property is not configured
self._answer = None # 42 will be used by default

Provided Services

class pelix.ipopo.decorators.Provides (specifications, controller=None, factory=False)
The @Provides decorator defines a service to be exposed by component instances. This service will be
registered (visible) in the Pelix service registry while the component is valid and the service controller is set to
True.

This decorator accepts the following parameters:
Parameters

* specifications — A list of provided specification(s), or the single provided specifica-
tion (can’t be empty)

* controller — The name of the service controller class field (optional)
Handler ID pelix.ipopo.constants.HANDLER_PROVIDES

All the properties of the component defined with the Property decorator will be visible in the service prop-
erties.

The controller is a Python property that must contain a boolean. By default, the controller is set to True, i.e.
the service will be provided by the component when it is validated.

@ComponentFactory ()
'answer.value' will be a property of the service
@Property ('_answer', 'answer.value')
@Provides ('hello.world'")
class Foo (object) :
pass

@ComponentFactory ()

This service will provide multiple specifications

@Provides (['hello.world', 'hello.world.extended'], '_svc_flag')
class Bar (object):

self._svc flag = False ; to forbid the service to be provided
self._svc_flag = True ; to provide the service
pass

Sets up a provided service. A service controller can be defined to enable or disable the service.
Parameters
* specifications — A list of provided interface(s) name(s) (can’t be empty)
* controller — Name of the service controller class field (optional)
* factory - If True, this service is a service factory

Raises ValueError — If the specifications are invalid

44 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

Requirements

class pelix.ipopo.decorators.Requires (field, specification, aggregate=False, optional=False,

spec_filter=None, immediate_rebind=False)
The @Requires decorator defines the requirement of a service. It accepts the following parameters:

Parameters
» field - The field where to inject the requirement
* specification — The specification of the service to inject
* aggregate — If True, injects a list of services, else the first matching service
* optional - If True, this injection is optional: the component can be valid without it
* spec_filter — An LDAP query to filter injected services according to their properties

* immediate_rebind - If True, the component won’t be invalidated then re-validated if a
matching service is available when the injected dependency is unbound

Handler ID pelix.ipopo.constants.HANDLER_REQUIRES

The field and specification attributes are mandatory. By default, a requirement is neither aggregated
nor optional (both are set to False and no specification filter is used.

Note: Since iPOPO 0.5.4, only one specification can be given.

@ComponentFactory ()
@QRequires ('_hello', 'hello.world")
class Foo (object) :

pass

@ComponentFactory ()
@Requires ('_hello', 'hello.world', aggregate=True, optional=False,
spec_filter="' (language=fr)")
class Bar (object) :
pass

Parameters
* field - The injected field
* specification - The injected service specification
* aggregate — If True, injects a list
* optional - If True, this injection is optional
* spec_filter — An LDAP query to filter injected services upon their properties

* immediate_rebind - If True, the component won’t be invalidated then re-validated if a
matching service is available when the injected dependency is unbound

Raises
* TypeError — A parameter has an invalid type

* ValueError — An error occurred while parsing the filter or an argument is incorrect

3.5. Reference Cards 45

iPOPO Documentation, Release 0.7.0

class pelix.ipopo.decorators.Temporal (field, specification, optional=False, spec_filter=None,

timeout=10)
The @Temporal decorator defines a single immediate rebind requirement with a grace time when the injected

service disappears.

This decorator acts like :class:Requires except it doesn’t support immediate_rebind (set to True) nor
aggregate. It also adds the following argument:

Parameters timeout — Temporal timeout, in seconds (must be greater than 0)
Handler ID pelix.ipopo.constants.HANDLER_TEMPORAL

When the injected service disappears, the component won’t be invalidated before the given timeout. If a match-
ing is found, it is injected in-place and the component instance continues its operations. If the service is used
while no service is available, the call is put in hold and blocks until a new service is injected or until the timeout
is reached. In the latter case, a TemporalException is raised.

@ComponentFactory ()
@Temporal ('_hello', 'hello.world', timeout=5)
class Bar (object) :

pass
Parameters
* field - The injected field
* specification — The injected service specification
* optional - If true, this injection is optional
» spec_filter — An LDAP query to filter injected services upon their properties
* timeout — Temporal timeout, in seconds (must be greater than 0)
Raises
* TypeError — A parameter has an invalid type
* ValueError — An error occurred while parsing the filter or an argument is incorrect
class pelix.ipopo.decorators.RequiresBest (field, specification, optional=False,

spec_filter=None, immediate_rebind=True)
The @RequiresBest decorator acts like Requires, but it always injects the service with the best rank

(service.ranking property).

Unlike most of the other requirement decorators, @RequiresBest doesn’t support the injection of a list of
services: only the best service can be injected.

Handler ID pelix.ipopo.constants.HANDLER_REQUIRES_BEST

@ComponentFactory ()
QRequiresBest ('_hello', 'hello.world')
class Foo (object) :

pass

@ComponentFactory ()
@QRequiresBest ('_hello', 'hello.world', optional=True,
spec_filter="' (language=£fr)"')
class Bar (object) :
pass

Parameters

46

Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

* field - The injected field

* specification — The injected service specification

* optional - If true, this injection is optional

* spec_filter — An LDAP query to filter injected services upon their properties

* immediate_rebind - If True, the component won’t be invalidated then re-validated if a
matching service is available when the injected dependency is unbound

Raises
* TypeError — A parameter has an invalid type
* ValueError — An error occurred while parsing the filter or an argument is incorrect
class pelix.ipopo.decorators.RequiresMap (field, specification, key, allow_none=False,

aggregate=False, optional=False,

spec_filter=None)
The @RequiresMap decorator defines a requirement that must be injected in a dictionary.

In addition to the arguments of :class:Requires, this decorator also accepts or redefines the following ones:
Parameters
* key — The name of the service property to use as a dictionary key
* allow_none — If True, also injects services with the property value set to None or missing

* aggregate — If true, injects a list of services with the same property value, else injects
only one service per value

Handler ID pelix.ipopo.constants.HANDLER_REQUIRES_MAP

@ComponentFactory ()
@RequiresMap ('_hello', 'hello.world', 'language')
class Bar (object) :

self._hello['fr'].hello('le monde')
pass
Parameters

* field - The injected field

* specification — The injected service specification

* key — Name of the service property to use as a dictionary key

* allow_none - If True, inject services with a None property value

* aggregate — If true, injects a list

* optional - If true, this injection is optional

* spec_filter — An LDAP query to filter injected services upon their properties
Raises

* TypeError — A parameter has an invalid type

* ValueError — An error occurred while parsing the filter or an argument is incorrect

3.5. Reference Cards

47

iPOPO Documentation, Release 0.7.0

class pelix.ipopo.decorators.RequiresVarFilter (field, specification, aggregate=False, op-
tional=False, spec_filter=None, imme-

diate_rebind=False)
The @RequiresVarFilter decorator acts like Requires, but its LDAP filter dynamically adapts to the

properties of this component.

Handler ID pelix.ipopo.constants.HANDLER_REQUIRES_VARIABLE_FILTER

@ComponentFactory ()

@Property('_lang', 'lang', 'fr'")
QRequiresVarFilter ('_hello', 'hello.world', optional=True,
spec_filter="' (language={lang})")
class Bar (object) :
pass
Parameters

» field - The injected field

* specification - The injected service specification

* aggregate — If True, injects a list

* optional - If True, this injection is optional

* spec_filter — An LDAP query to filter injected services upon their properties

* immediate_rebind - If True, the component won’t be invalidated then re-validated if a
matching service is available when the injected dependency is unbound

Raises
* TypeError — A parameter has an invalid type

* ValueError — An error occurred while parsing the filter or an argument is incorrect

Instance definition

class pelix.ipopo.decorators.Instantiate (name, properties=None)
This decorator tells iPOPO to instantiate a component instance from this factory as soon as its bundle is in
ACTIVE state.

It accepts the following arguments:
Parameters
* name — The name of the component instance (mandatory)
* properties — The initial properties of the instance
If no properties are given, the default value declared in @Property decorators will be used.

The properties are associated to the component instance but not added to it. This means that new (meta-) prop-
erties can be added to add information to the component (like the Remote Services export properties), but those
won’t be accessible directly by the component. Those extra properties will be visible in component’s services
properties and in the instance properties returned by the iPOPO get_instance_details () method, but
no new field will be injected in the component instance.

@ComponentFactory ()
@Property('_name', 'name', 'foo')
@Instantiate ('component-1")

(continues on next page)

48 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

(continued from previous page)

@Instantiate ('component-2', {'name': 'bar'})
class Foo (object) :
pass

Parameters
¢ name — Instance name

* properties — Instance properties

Life-cycle events

Those decorators store behavioral information on component methods. They must decorate methods in the component
class.

Component state

pelix.ipopo.decorators.Validate (method)
The validation callback decorator is called when a component becomes valid, i.e. if all of its required depen-
dencies has been injected.

The decorated method must accept the bundle’s BundleContext as argument:

@validate
def validation_method(self, bundle_context) :

rrr

bundle_context: The component's bundle context

rrr

#

If the validation callback raises an exception, the component goes into ERRONEOQOUS state.

If the component provides a service, the validation method is called before the provided service is registered to
the framework.

Parameters method — The validation method
Raises TypeError — The decorated element is not a valid function

pelix.ipopo.decorators.Invalidate (method)
The invalidation callback decorator is called when a component becomes invalid, i.e. if one of its required
dependencies disappeared.

The decorated method must accept the bundle’s BundleContext as argument:

@Invalidate
def invalidation_method(self, bundle_context):

rrr

bundle_context: The component's bundle context

rrr

#

Exceptions raised by an invalidation callback are ignored.

If the component provides a service, the invalidation method is called after the provided service has been unreg-
istered to the framework.

3.5. Reference Cards 49

iPOPO Documentation, Release 0.7.0

Parameters method — The decorated method

Raises TypeError — The decorated element is not a function

Injections

pelix.ipopo.decorators.Bind (method)
The @Bind callback decorator is called when a component is bound to a dependency.

The decorated method must accept the injected service object and its ServiceReference as arguments:

@Bind

def bind_method(self, service, service_reference):
rr
service: The injected service instance.

service _reference: The injected service ServiceReference
rr

#

If the service is a required one, the bind callback is called before the component is validated.
The service reference can be stored if it is released on unbind.
Exceptions raised by a bind callback are ignored.

Parameters method — The decorated method

Raises TypeError — The decorated element is not a valid function

class pelix.ipopo.decorators.BindField (field, if valid=False)
The @BindField callback decorator is called when a component is bound to a dependency, injected in the
given field.

This decorator accepts the following arguments:
Parameters
» field - The field associated to the binding
* if wvalid - If True, call the decorated method only when the component is valid

The decorated method must accept the field where the service has been injected, the service object and its
ServiceReference as arguments:

@BindField('_hello'")

def bind_method(self, field, service, service_reference):
field: Field wherein the dependency 1is injected
service: The injected service instance.

service _reference: The injected service ServiceReference
rr

#

If the service is a required one, the bind callback is called before the component is validated. The bind field
callback is called after the global bind method.

The service reference can be stored if it is released on unbind.
Exceptions raised by a bind callback are ignored.
Parameters

» field - Field associated to the binding

50 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

* if wvalid - Call the method only if the component is valid

pelix.ipopo.decorators.Update (method)
The @Update callback decorator is called when the properties of an injected service have been modified.

The decorated method must accept the injected service object and its ServiceReference and the previous
properties as arguments:

@Update
def update_method(self, service, service_reference, old_properties):
rr
service: The injected service instance.
service_reference: The injected service ServiceReference
old _properties: The previous service properties

rrr

#

Exceptions raised by an update callback are ignored.
Parameters method — The decorated method
Raises TypeError — The decorated element is not a valid function

class pelix.ipopo.decorators.UpdateField (field, if valid=False)
The @UpdateField callback decorator is called when the properties of a service injected in the given field
have been updated.

This decorator accepts the following arguments:
Parameters
» field - The field associated to the binding
* if wvalid - If True, call the decorated method only when the component is valid

The decorated method must accept the field where the service has been injected, the service object, its
ServiceReference and its previous properties as arguments:

@QUpdateField ('_hello')
def update_method(self, service, service_reference, old_properties):
P
field: Field wherein the dependency 1is injected
service: The injected service instance.
service_reference: The injected service ServiceReference
old _properties: The previous service properties

rrr

#

Exceptions raised by an update callback are ignored.
Parameters
» field - Field associated to the binding
* if valid - Call the method only if the component is valid

pelix.ipopo.decorators.Unbind (method)
The @Unbind callback decorator is called when a component dependency is unbound.

The decorated method must accept the injected service object and its ServiceReference as arguments:

3.5. Reference Cards 51

iPOPO Documentation, Release 0.7.0

@Unbind

def unbind_method(self, service, service_reference):
rr
service: The previously injected service instance.
service_reference: Its ServiceReference

rrr

#

If the service is a required one, the unbind callback is called after the component has been invalidated.
Exceptions raised by an unbind callback are ignored.
Parameters method — The decorated method

Raises TypeError — The decorated element is not a valid function

class pelix.ipopo.decorators.UnbindField (field, if valid=False)

The @UnbindField callback decorator is called when an injected dependency is unbound.
This decorator accepts the following arguments:
Parameters
* field - The field associated to the binding
* if wvalid - If True, call the decorated method only when the component is valid

The decorated method must accept the field where the service has been injected, the service object, its
ServiceReference and its previous properties as arguments:

@UnbindField('_hello')

def unbind_method(self, field, service, service_reference):
rr
field: Field wherein the dependency was injected
service: The injected service instance.
service_reference: The injected service ServiceReference

rrr

#

If the service is a required one, the unbind callback is called after the component has been invalidated. The
unbind field callback is called before the global unbind method.

Exceptions raised by an unbind callback are ignored.
Parameters
» field - Field associated to the binding

* if wvalid - Call the method only if the component is valid

Service state

pelix.ipopo.decorators.PostRegistration (method)

The service post-registration callback decorator is called after a service of the component has been registered to
the framework.

The decorated method must accept the ServiceReference of the registered service as argument:

52

Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

@PostRegistration
def callback_method(self, service_reference):

rrr

service_reference: The ServiceReference of the provided service

rrr

#

Parameters method — The decorated method

Raises TypeError — The decorated element is not a valid function

pelix.ipopo.decorators.PostUnregistration (method)

The service post-unregistration callback decorator is called after a service of the component has been unregis-
tered from the framework.

The decorated method must accept the ServiceReference of the registered service as argument:

@PostUnregistration
def callback_method(self, service_reference):

rrr

service_reference: The ServiceReference of the provided service

rrr

#

Parameters method — The decorated method

Raises TypeError — The decorated element is not a valid function

3.5.5 Initial Configuration File

The pelix.misc.init_handler module provides the TnitFileHandler class. Itis able to load the config-
uration of an iPOPO framework, from one or multiple files.

This configuration allows to setup environment variables, additional Python paths, framework properties, a list of
bundles to start with the framework and a list of components to instantiate.

File Format

Configuration files are in JSON format, with a root object which can contain the following entries:

properties: aJSON object defining the initial properties of the framework. The object keys must be strings,
but can be associated to any valid JSON value.

environment: a JSON object defining new environment variables for the process running the framework.
Both keys and values must be strings.

paths: a JSON array containing paths to add to the Python lookup paths. The given paths will be prioritized,
i.e. if a path was already defined in sys.path, it will be moved forward. The given paths can contains
environment variables and the user path marker (~).

Note that the current working directory (cwd) will always be the first element of sys.path when using an
initial configuration handler.

bundles: a JSON array containing the names of the bundles to install and start with the framework.

components: a JSON array of JSON objects defining the components to instantiate. Each component de-
scription has the following entries:

3.5.

Reference Cards 53

iPOPO Documentation, Release 0.7.0

— factory: the name of the component factory
— name: the name of the instance
— properties (optional): a JSON object defining the initial properties of the component

Here is a sample initial configuration file:

{

"properties": {
"some.value": 42,
"framework.uuid": "custom-uuid",
"arrays": ['they', 'work', 'too', 123],
"dicts": {"why": "not?"}

}I

"environment": {
"new_path": "/opt/foo",
"LANG": "en_US.UTF-8"

}

"paths": [
"/opt/bar",

"Snew_path/mylib.zip"

]I

"bundles": [
"pelix.misc.log",
"pelix.shell.log",
"pelix.http.basic"

]I

"components": [
{
"factory": "pelix.http.service.basic.factory",
"name": "httpd",
"properties": {
"pelix.http.address": "127.0.0.1"

Moreover, if the root object contains a reset_<name> entry, then the previously loaded configuration for the
<name> entry are forgotten: the current configuration will replace the old one instead of updating it.

For example:

{
"bundles": [
"pelix.http.basic"
I

"reset_bundles": true

When this file will be loaded, the list of bundles declared by previously loaded configuration files will be cleared and
replaced by the one in this file.

File lookup

A InitFileHandler object updates its internal state with the content of the files it parses. As a result, multiple
configuration files can be used to start framework with a common basic configuration.

54 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

When calling load () without argument, the handler will try to load all the files named .pelix.conf in the
following folders and order:

* /etc/default
* /etc
e /usr/local/etc
e ~/.local/pelix
e ~/.config
e ~ (user directory)
* . (current working directory)
When giving a file name to Ioad (), the handler will merge the configuration it contains with its current state.

Finally, after having updated a configuration, the TnitFileHandler will remove duplicated in Python path and
bundles configurations.

Support in Pelix shell
The framework doesn’t starts a TnitFileHandler on its own: it must be created and loaded before creating the
framework.
Currently, only the Pelix Shell Console supports the initial configuration, using the following arguments:
* no argument: the .pelix.conf files are loaded as described in File lookup.
* —e, ——empty-conf: no initial configuration file will be loaded
e —c <filename>, ——conf <filename>: the default configuration files, then given one will be loaded.
e —C <filename>, ——exclusive-conf <filename>: only the given configuration file will be loaded.

It is planned that the support for initial configuration files will be added to other shells in future iPOPO versions.

API
class pelix.misc.init_handler.InitFileHandler
Parses and handles the instructions of initial configuration files

clear ()
Clears the current internal state (cleans up all loaded content)

instantiate_components (context)
Instantiate the defined components

Parameters context — A BundleContext object
Raises BundleException — Error starting a component

load (filename=None)
Loads the given file and adds its content to the current state. This method can be called multiple times to
merge different files.

If no filename is given, this method loads all default files found. It returns False if no default configuration
file has been found

Parameters f£filename — The file to load

3.5. Reference Cards 55

iPOPO Documentation, Release 0.7.0

Returns True if the file has been correctly parsed, False if no file was given and no default file
exist

Raises IOError — Error loading file

normalize ()
Normalizes environment variables and the Python path.

This method first updates the environment variables (os . environ). Then, it normalizes the Python path
(sys.path) by resolving all references to the user directory and environment variables.

bundles
Returns The list of names of bundles to install and start
properties

Returns The initial framework properties

Sample API Usage

This sample starts a framework based on the default configuration files, plus a given one named some_file.json.

import pelix.framework as pelix
from pelix.misc.init_handler import InitFileHandler

Read the initial configuration script
init = InitFileHandler ()

Load default configuration
init.load()

Load the given configuration file
init.load ("some_file.json")

Normalize configuration (forge sys.path)
init.normalize ()

Use the utility method to create, run and delete the framework
framework = pelix.create_framework (init.bundles, init.properties)
framework.start ()

Instantiate configured components
init.instantiate_components (framework.get_bundle_context ())

Let the framework live

try:
framework.wait_for_stop ()

except KeyboardInterrupt:
framework.stop ()

3.5.6 Logging

The best way to log traces in iPOPO is to use the logging module from the Python Standad Library. Pelix/iPOPO
relies on this module for its own logs, using a module level constant providing a logger with the name of the module,
like this:

56 Chapter 3. User’s Guide

https://docs.python.org/3/library/logging.html

iPOPO Documentation, Release 0.7.0

import logging
_logger = logging.getLogger (__name_)

That being said, Pelix/iPOPO provides a utility log service matching the OSGi LogService specification, which logs
to and reads traces from the standard Python logging system.

The log service is provided by the pelix.misc.log bundle. It handles LogEnt ry object keeping track of the log
timestamp, source bundle and message. It also registers as a handler to the Python logging system, which means it can
also keep track of all traces logged with the 1ogging module.

API

Once install and started, the pelix.misc.log bundle provides two services:
* pelix.log: The main log service, which allows to log entries;

* pelix.log.reader: The log reader service, which gives a read-only access to previous log entries. Those
entries can be stored using either the log service or the Python logging system.

Log Service

The log service provides the following method:

class pelix.misc.log.LogServiceInstance (reader, bundle)
Instance of the log service given to a bundle by the factory

Parameters
* reader — The Log Reader service
¢ bundle - Bundle associated to this instance

log (level, message, exc_info=None, reference=None)
Logs a message, possibly with an exception

Parameters
e level - Severity of the message (Python logging level)
* message — Human readable message
* exc_info — The exception context (sys.exc_info()), if any

* reference — The ServiceReference associated to the log

Log Reader Service

The log reader provides the following methods:

class pelix.misc.log.LogReaderService (context, max_entries)
The LogReader service

Parameters
¢ context — The bundle context

* max_entries — Maximum stored entries

3.5. Reference Cards 57

iPOPO Documentation, Release 0.7.0

add_log_listener (listener)
Subscribes a listener to log events.

A log listener is an object providing with a 1ogged method, with the following signature:

def logged(self, log_entry):

rrr

A log entry (LogEntry) has been added to the log service

rro

#

Parameters listener — A new listener
get_log ()
Returns the logs events kept by the service
Returns A tuple of log entries

remove_log_listener (listener)
Unsubscribes a listener from log events.

Parameters listener — The listener to remove

The result of get__log () and the argument to listeners registered with add_log_listener () isa LogEntry
object, giving read-only access to the following properties:

class pelix.misc.log.LogEntry (level, message, exception, bundle, reference)

Represents a log entry
Parameters
* level — The Python log level of the entry
* message — A human readable message
* exception — The exception associated to the entry
* bundle — The bundle that created the entry
* reference — The service reference associated to the entry

bundle
The bundle that created this entry

exception
The exception associated to this entry

level
The log level of this entry (Python constant)

message
The message associated to this entry

osgi_level
The log level of this entry (OSGi constant)

reference

The reference to the service associated to this entry
time

The timestamp of this entry

58

Chapter 3

. User’s Guide

iPOPO Documentation, Release 0.7.0

Note: LogEntry is a read-only bean which can’t be un-marshalled by Pelix Remote Services transport providers.
As a consequence, it is not possible to get the content of a remote log service as is.

Sample Usage

Using the shell is pretty straightforward, as it can be seen in the pelix.shell.log bundle.

import logging

from pelix.ipopo.decorators import ComponentFactory, Requires, Instantiate, \
Validate, Invalidate
from pelix.misc import LOG_SERVICE, LOG_READER_SERVICE

@ComponentFactory ("log-sample—factory")
@QRequires ("_logger", LOG_SERVICE)
@Requires ("_reader", LOG_READER_SERVICE)
@Instantiate ("log-sample")

class Samplelog (object) :

mmn

Provides shell commands to print the content of the log service
def _ init_ (self):

self._logger = None

self._reader None

@validate

def _validate(self, context):
self._reader.add_log_listener (self)
self._logger.log(logging.INFO, "Component validated™)

@Invalidate

def _invalidate(self, context):
self._logger.log(logging.WARNING, "Component invalidated")
self._reader.remove_log_listener (self)

def logged(self, entry):
print ("Got a log:", entry.message, "at level", entry.level)

The log service is provided by a service factory, therefore the components of a same bundle share the same service,
and each bundle has a different instance of the logger. The log reader service is a singleton service.

Shell Commands

The pelix.shell.log bundle provides a set of commands in the 1og shell namespace, to interact with the log
services:

Command | Description

log Prints the last N entries with level higher than the given one (WARNING by default)
debug Logs a message at DEBUG level

info Logs a message at INFO level

warning Logs a message at WARNING level

warn An alias of the warning command

error Logs a message at ERROR level

3.5. Reference Cards 59

iPOPO Documentation, Release 0.7.0

$ install pelix.misc.log

Bundle ID: 12

$ start $°7

Starting bundle 12 (pelix.misc.log)...
$ install pelix.shell.log

Bundle ID: 13

$ start $7

Starting bundle 13 (pelix.shell.log)...

$ debug "Some debug log"

$ info "..INFO.."

$ warning ! !WARN!!

$ error oops

$ log 3

WARNING :: 2017-03-10 12:06:29.131131 :: pelix.shell.log :: !!WARN!!
ERROR :: 2017-03-10 12:06:31.884023 :: pelix.shell.log :: oops

$ log info
INFO :: 2017-03-10 12:06:26.331350 :: pelix.shell.log :: ..INFO..

WARNING :: 2017-03-10 12:06:29.131131 :: pelix.shell.log :: !!WARN!!
ERROR :: 2017-03-10 12:06:31.884023 :: pelix.shell.log :: oops

$ log info 2

WARNING :: 2017-03-10 12:06:29.131131 :: pelix.shell.log :: !!WARN!!
ERROR :: 2017-03-10 12:06:31.884023 :: pelix.shell.log :: oops

$

3.5.7 HTTP Service

The HTTP service is a basic servlet container, dispatching HTTP requests to the handler registered for the given
path. A servlet can be a simple class or a component, registered programmatically to the HTTP service, or a service
registered in the Pelix framework and automatically registered by the HTTP service.

Note: Even if it borrows the concept of servlets from Java, the Pelix HTTP service doesn’t follow the OSGi specifi-
cation. The latter inherits a lot from the existing Java APIs, while this is an uncommon way to work in Python.

The basic implementation of the HTTP service is defined in pelix.http.basic. Itis based on the HTTP server
available in the standard Python library (see http.server). Future implementations might appear in the future Pelix
implementations, based on more robust requests handlers.

Configuration properties

All implementations of the HTTP service must support the following property:

Property Default | Description
pelix.http.address | 0.0.0.0 | The address the HTTP server is bound to
pelix.http.port 8080 The port the HTTP server is bound to

Instantiation
The HTTP bundle defines a component factory which name is implementation-dependent. The HTTP service factory
provided by Pelix/iPOPO is pelix.http.service.basic.factory.

Here is a snippet that starts a HTTP server component, named http—server, which only accepts local clients on
port 9000:

60 Chapter 3. User’s Guide

https://docs.python.org/3/library/http.server.html

iPOPO Documentation, Release 0.7.0

from pelix.framework import FrameworkFactory
from pelix.ipopo.constants import use_ipopo

Start the framework

framework = FrameworkFactory.get_framework ()
framework.start ()

context = framework.get_bundle_context ()

Install & start 1POPO
context.install_bundle('pelix.ipopo.core') .start ()

Install & start the basic HTTP service
context.install_bundle('pelix.http.basic') .start ()

Instantiate a HTTP service component
with use_ipopo (context) as ipopo:
ipopo.instantiate (

'pelix.http.service.basic.factory', 'http-server',

{'pelix.http.address': 'localhost',
'pelix.http.port': 9000})

This code starts an HTTP server which will be listening on port 9000 and the HTTP service will be ready to handle
requests. As no servlet service has been registered, the server will only return 404 errors.

API

HTTP service

The HTTP service provides the following interface:

class pelix.http.basic.HttpService
Basic HTTP service component

get_access ()
Retrieves the (address, port) tuple to access the server

static get_hostname ()
Retrieves the server host name

Returns The server host name

get_registered_paths ()
Returns the paths registered by servlets

Returns The paths registered by servlets (sorted list)

get_servlet (path)

Retrieves the servlet matching the given path and its parameters. Returns None if no servlet matches the

given path.
Parameters path — A request URI

Returns A tuple (servlet, parameters, prefix) or None

is_https()
Returns True if this is an HTTPS server

Returns True if this server uses SSL

3.5. Reference Cards

61

iPOPO Documentation, Release 0.7.0

register_servlet (path, serviet, parameters=None)
Registers a servlet

Parameters

e path — Path handled by this servlet

* servlet — The servlet instance

* parameters — The parameters associated to this path
Returns True if the servlet has been registered, False if it refused the binding.
Raises ValueError — Invalid path or handler

unregister (path, servlet=None)
Unregisters the servlet for the given path

Parameters
* path — The path to a servlet
* servlet — If given, unregisters all the paths handled by this servlet
Returns True if at least one path as been unregistered, else False
The service also provides two utility methods to ease the display of error pages:

class pelix.http.basic.HttpService
Basic HTTP service component

make_exception_page (path, stack)
Prepares a page printing an exception stack trace in a 500 error

Parameters

* path — Request path

» stack — Exception stack trace
Returns A HTML page

make_not_found_page (path)
Prepares a “page not found” page for a 404 error

Parameters path — Request path
Returns A HTML page

Servlet service

To use the whiteboard pattern, a servlet can be registered as a service providing the pelix.http.servlet speci-
fication. It must also have a valid pelix.http.path property, or it will be ignored.

The binding methods described below have a parameters argument, which represents a set of properties of the
server, given as a dictionary. Some parameters can also be given when using the register serviet () method,
with the parameters argument.

In any case, the following entries must be set by all implementations of the HTTP service and can’t be overridden
when register a servlet. Note that their content and liability is implementation-dependent:

* http.address: the binding address (str) of the HTTP server;
* http.port: the real listening port (int) of the HTTP server;
* http.https: aboolean flag indicating if the server is listening to HTTP (False) or HTTPS (True) requests;

62 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

* http.name: the name (str) of the server. If the server is an iPOPO component, it should be the instance name;
* http.extra: an implementation dependent set of properties.
A servlet for the Pelix HTTP service has the following methods:

class HttpServlet
These are the methods that the HTTP service can call in a servlet. Note that it is not necessary to implement
them all: the service has a default behaviour for missing methods.

accept_binding (path, parameters)
This method is called before trying to bind the servlet. If it returns False, the servlet won’t be bound to the
server. This allows a servlet service to be bound to a specific server.

If this method doesn’t exist or returns None or anything else but False, the calling HTTP service will
consider that the servlet accepts to be bound to it.

Parameters
* path (str) - The path of the servlet in the server
e parameters (dict) — The parameters of the server

bound_to (path, parameters)
This method is called when the servlet is bound to a path. If it returns False or raises an Exception, the

registration is aborted.
Parameters
* path (str) — The path of the servlet in the server
e parameters (dict)— The parameters of the server

unbound_ from (path, parameters)
This method is called when the servlet is bound to a path. The parameters are the ones given in
accept_binding () and bound_to ().

Parameters
* path (str) - The path of the servlet in the server
e parameters (dict) — The parameters of the server

do_GET (request, response)
Each request is handled by the method call do_ XXX where XXX is the name of an HTTP method (do_GET,
do_POST, do_PUT, do_HEAD, ...).

If it raises an exception, the server automatically sends an HTTP 500 error page. In nominal behaviour,
the method must use the response argument to send a reply to the client.

Parameters
* request — A AbstractHTTPServletRequest representation of the request

* response — The AbstractHTTPServletResponse object to use to reply to the
client

HTTP request

Each request method has a request helper argument, which implements the AbstractHTTPServiletRequest
abstract class.

class pelix.http.AbstractHTTPServletRequest
Abstract HTTP Servlet request helper

3.5. Reference Cards 63

iPOPO Documentation, Release 0.7.0

get_client_address ()
Returns the address of the client

Returns A (host, port) tuple

get_command ()
Returns the HTTP verb (GET, POST, ...) used for the request

get_header (name, default=None)
Returns the value of a header

Parameters

* name — Header name

* default — Default value if the header doesn’t exist
Returns The header value or the default one

get_headers ()
Returns a copy all headers, with a dictionary interface

Returns A dictionary-like object

get_path()
Returns the request full path

Returns A request full path (string)

get_prefix_ path()
Returns the path to the servlet root

Returns A request path (string)

get_rfile()
Returns the request input as a file stream

Returns A file-like input stream

get_sub_path()
Returns the servlet-relative path, i.e. after the prefix

Returns A request path (string)

read_data ()
Reads all the data in the input stream

Returns The read data

HTTP response

Each request method also has a response helper argument,
AbstractHTTPServletResponse abstract class.

class pelix.http.AbstractHTTPServletResponse
HTTP Servlet response helper

end headers ()
Ends the headers part

get_wfile()

which implements the

Retrieves the output as a file stream. end_headers () should have been called before, except if you

want to write your own headers.

64

Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

Returns A file-like output stream

is_header_set (name)
Checks if the given header has already been set

Parameters name — Header name
Returns True if it has already been set

send_content (http_code, content, mime_type="text/html’, http_message=None, content_length=-1)
Utility method to send the given content as an answer. You can still use get_wfile or write afterwards, if
you forced the content length.

If content_length is negative (default), it will be computed as the length of the content; if it is positive, the
given value will be used; if it is None, the content-length header won’t be sent.

Parameters
* http_code — HTTP result code
* content — Data to be sent (must be a string)
* mime_type — Content MIME type (content-type)
* http_message — HTTP code description
* content_length — Forced content length

set_header (name, value)
Sets the value of a header. This method should not be called after end_headers ().

Parameters
¢ name — Header name
¢ value — Header value

set_response (code, message=None)
Sets the response line. This method should be the first called when sending an answer.

Parameters
e code — HTTP result code
* message — Associated message

write (data)

Writes the given data. end_headers () should have been called before, except if you want to write your
own headers.

Parameters data — Data to be written

Write a servlet

This snippet shows how to write a component providing the servlet service:

from pelix.ipopo.decorators import ComponentFactory, Property, Provides, \
Requires, Validate, Invalidate, Unbind, Bind, Instantiate

@ComponentFactory (name="'simple-servlet—-factory')
@Instantiate('simple-servlet')

@Provides (specifications="'pelix.http.servlet")
@Property ('_path', 'pelix.http.path', "/servlet")
class SimpleServletFactory (object):

(continues on next page)

3.5. Reference Cards 65

iPOPO Documentation, Release 0.7.0

(continued from previous page)

mmwn

Simple servlet factory
mmn

def _ init__ (self):
self._path = None

def bound_to(self, path, params):

mmn

Servlet bound to a path
mmwn

print ('Bound to ' + path)
return True

def unbound_from(self, path, params):
mmmn

Servlet unbound from a path
print ('Unbound from ' + path)
return None

def do_GET (self, request, response):

mmn

Handle a GET

mon

content = """<html>
<head>
<title>Test SimpleServlet</title>
</head>
<body>

Client address: {clt_addr[0]}</1li>

Client port: {clt_addr[l]}</1i>

Host: {host}</1li>

Keys: {keys}</1li>

</body>

</html>"""_ format (clt_addr=request.get_client_address(),
host=request.get_header ('host', 0),
keys=request.get_headers () .keys())

response.send_content (200, content)

To test this snippet, install and start this bundle and the HTTP service bundle in a framework, then open a browser to
the servlet URL. If you used the HTTP service instantiation sample, this URL should be http://localhost:9000/servlet.

3.5.8 HTTP Routing utilities

The pelix.http.routing module provides a utility class and a set of decorators to ease the development of
REST-like servlets.

Decorators

66 Chapter 3. User’s Guide

http://localhost:9000/servlet

iPOPO Documentation, Release 0.7.0

Important: A servlet which uses the utility decorators must inherit from the pelix.http.routing.
RestDispatcher class.

The pelix.http.routing.RestDispatcher class handles all do_+ methods and calls the corresponding
decorated methods in the child class.

The child class can declare as many methods as necessary, with any name (public, protected or private) and decorate
them with the following decorators. Note that a method can be decorated multiple times.

class pelix.http.routing.Http (route, methods=None)
Decorator indicating which route a method handles

Parameters
* route — Path handled by the method (beginning with a ‘/*)
e methods — List of HTTP methods allowed (GET, POST, ...)

class pelix.http.routing.HttpGet (route)
Bases: pelix.http.routing.Http

Decorates a method handling GET requests
Parameters route — Path handled by the method (beginning with a ‘/*)

class pelix.http.routing.HttpPost (route)
Bases: pelix.http.routing.Http

Decorates a method handling POST requests
Parameters route — Path handled by the method (beginning with a ‘/*)

class pelix.http.routing.HttpPut (route)
Bases: pelix.http.routing.Http

Decorates a method handling PUT requests
Parameters route — Path handled by the method (beginning with a ‘/*)

class pelix.http.routing.HttpHead (route)
Bases: pelix.http.routing.Http

Decorates a method handling HEAD requests
Parameters route — Path handled by the method (beginning with a ‘/*)

class pelix.http.routing.HttpDelete (route)
Bases: pelix.http.routing.Http

Decorates a method handling DELETE requests
Parameters route — Path handled by the method (beginning with a ‘/*)
The decorated methods muse have the following signature:

decorated_method (request, response, **kwargs)
Called by the dispatcher to handle a request.

The keyword arguments must have the same name as the ones given in the URL pattern in the decorators.
Parameters
* request — An AbstractHTTPServletRequest object

* response — An AbstractHTTPServletResponse object

3.5. Reference Cards 67

iPOPO Documentation, Release 0.7.0

Supported types

Each argument in the URL can be automatically converted to the requested type. If the conversion fails, an error 500
is automatically sent back to the client.

Type | Description

string | Simple string used as is. The string can’t contain a slash (/)

int The argument is converted to an integer. The input must be of base 10. Floats are rejected.
float | The argument is converted to a float. The input must be of base 10.

path A string representing a path, containing slashes.

uuid | The argument is converted to a uuid.UUID class.

Multiple arguments can be given at a time, but can only be of one type.

Sample

from pelix.ipopo.decorators import ComponentFactory, Provides, Property, \
Instantiate

from pelix.http import HTTP_SERVLET, HTTP_SERVLET_PATH

from pelix.http.routing import RestDispatcher, HttpGet, HttpPost

@ComponentFactory ()
@Provides (HTTP_SERVLET)
@Property ('_path', HTTP_SERVLET_PATH, '/api/vO0'")
@Instantiate ("some-servlet")
class SomeServlet (RestDispatcher) :
QHttpGet ("/1list")
def list_elements(self, request, response):
response.send_content (200, "<p>The list</p>")

QHttpPost ("/form/<form_id:uuid>")
def handle_form(self, request, response, form_id):
reponse.send_content (200, "<p>Handled {}</p>".format (form_id))

QHttpPut (" /upload/<some_id:int>/<filename:path>")
@HttpPut ("/upload/<filename:path>")
def handle_upload(
self, request, response,
some_id=None, filename=None) :
reponse.send_content (200, "<p>Handled {} : {}</p>" \
.format (some_id, filename))

3.5.9 Remote Services

Pelix/iPOPO provides support for remote services, i.e. consuming services provided from another framework instance.
This provider can run on the same machine as the consumer, or on another one.

Concepts

Pelix/iPOPO remote services implementation is a based on a set of services. This architecture eases the development
of new providers and allows to plug in or update protocols providers at run time.

In this section, we will shortly describe the basic concepts of Pelix Remote Services, i.e.:

68 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

* the concept of import and export endpoints

* the core services required to activate remote services
* the discovery providers

* the transport providers

The big picture of the Pelix Remote Services can be seen as:

Note that Pelix Remote Services implementation has been inspired from the OSGi Remote Services specification, and
tries to reuse most of its constants, to ease compatibility.

Before that, it is necessary to see the big picture: how does Pelix Remote Services works.

How does it work?

The export and import of a service follows this sequence diagram, described below:

When a service declares it can be exported, the export dispatcher detects it (as it is a service listener) notifies all
transport providers which matches the service properties. Each transport provider then tests if it can/must create an
endpoint for it and, if so, returns an export endpoint description to the exports dispatcher. The endpoint implementation
is transport-dependent: it can be a servlet (HTTP-based procotols), a serial-port listener, ... As a result, there can be
multiple export endpoints for a single service: (at least) one per transport provider. The description of each export
endpoint is then stored in the exports dispatcher, one of the core services of Pelix Remote Services.

When an endpoint (or a set of endpoints) is stored in the exports dispatcher, the discovery providers are notified and
send there protocol-specific events. They can target other Pelix frameworks, but also any other kind of frameworks
(OSGi/Java, ...) or of software (like a Node.js server with mDNS support). Those events indicate that new export
endpoints are available: they can point to the description of this endpoint or contain its serialized form. Note that the
description sent over the network must be an import-side description: it should contain all information required to
connect and use the endpoint, stored in import properties so that the newly imported services don’t get exported by
mistake.

Another framework using the same discovery provider can capture this event and handle the new set of import end-
points. Those endpoints will be stored in the imports registry, the other core service of Pelix Remote Services. If
multiple discovery providers find the same endpoints, don’t worry, they will be filtered out according to their unique
identifier (UUID).

The imports registry then notifies the transport providers to let them create a local proxy to the remote service and
register it as a local service (with import properties). This remote service is now usable by local consumers.

Note: In the current implementation of Pelix Remote Services, the same remote service can be imported multiple
times by the same consumer framework. This is due to the fact that the imported service is created by the transport
providers and not by the centralized imports registry.

This behaviour is useful when you want to consume a service from a specific provider, or if you can sort transport
providers by efficiency. This has to been taken into account in some cases, like when consuming multiple services of
the same specification while multiple transport providers are active.

This behaviour is subject to debate but is also used in some projects. It could be modified if enough problems are
reported either on the mailing list or in GitHub issues.

3.5. Reference Cards 69

https://groups.google.com/forum/#!forum/ipopo-users
https://github.com/tcalmant/ipopo/issues

iPOPO Documentation, Release 0.7.0

Finally, Pelix Remote Services also supports the update of service properties, which can be handled as a minimalist
event by the discovery providers, e.g. containing only the endpoint UID and the new properties. The unregistration is
often the simplest event of a discovery provider, sending only the endpoint UID.

Export/Import Endpoints

The endpoints objects are declared in pelix.remote.beans by the ExportEndpoint and
ImportEndpoint classes.

Both contain the following information:
 UID: the unique identifier of the endpoint. It is a class-4 UUID, which should be unique across frameworks.

* Framework: the UID of the framework providing the endpoint. It is mainly used to clean up the endpoints of a
lost framework. If too many endpoint UID collisions are reported, it could be used as a secondary key.

e Name: the name of the endpoint. It can have a meaning for the transport provider, but isn’t used by Pelix itself.
* Properties: a copy of the current properties of the remote service.

* Specifications: the list of service exported specifications. A service can choose to export a subset of its specifi-
cations, as some could be private or using non-serializable types.

 Configurations: the list of transports allowed to export this endpoint or used for importing it.

Finally, the ExportEndpoint object also gives access to the service reference and implemnetation, in order to let
transport providers access the methods and properties of the service.

Core Services

The core services of the Pelix Remote Services implementation is based on two services:

* the exports dispatcher which keeps track of and notifies the discovery providers about the export endpoints
created/updated/deleted by transport providers. If a discovery provider appears after the creation of an export
endpoint, it will still be notified by the exports dispatcher.

This service is provided by an auto-instantiated component from the pelix.remote.dispatcher bundle.
It provides a pelix.remote.dispatcher service.

* the imports registry which keeps track of and notifies the transports providers about the import endpoints, ac-
cording to the notifications from the discovery providers. If a transport provider appears after the registration of
an import endpoint, it will nevertheless be notified by the imports registry of existing endpoints.

This service is provided by an auto-instantiated component from the pelix.remote.registry bundle. It
provides a pelix.remote.registry service.

Dispatcher Servlet

The content of the exports dispatcher can be exposed by the dispatcher servlet, provided by the same bundle as the
exports dispatcher, pelix.remote.dispatcher. Most discovery providers rely on this servlet as it allows to get
the list of exported endpoints, or the details of a single one, in JSON format.

This servlet must be instantiated explicitly using its pelix—-remote-dispatcher-servlet-factory factory.
As itis a servlet, it requires the HTTP service to be up and running to provide it to clients.

Its API is very simple:

» /framework: returns the framework UID as a JSON string

70 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

* /endpoints: returns the whole list of the export endpoints registered in the exports dispatcher, as a JSON
array of JSON objects.

* /endpoint/<uid>: returns the export endpoint with the given UID as a JSON object.

Discovery Providers

A framework must discover a service before being able to use it. Pelix/iPOPO provides a set of discovery protocols:

¢ a home-made protocol based on UDP multicast packets, which supports addition, update and removal of ser-
vices;

* a home-made protocol based on MQTT, which supports addition, update and removal of services;
» mDNS, which is a standard but doesn’t support service update;

* adiscovery service based on Redis.

Transport Providers

The remote services implementation supports XML-RPC (using the xmlrpc standard package), but it is recommended
to use JSON-RPC instead (using the jsonrpclib-pelix third-party module). Indeed, the JSON-RPC layer has a better
handling of dictionaries and custom types. iPOPO also supports a variant of JSON-RPC, Jabsorb-RPC, which adds
Java type information to the arguments and results. As long as a Java interface is correctly implementing, this protocol
allows a Python service to be used by a remote OSGi Java framework, and vice-versa. The OSGi framework must host
the Java implementation of the Pelix Remote Services.

All those protocols require the HTTP service to be up and running to work. Finally, iPOPO also supports a kind of
MQTT-RPC protocol, i.e. JSON-RPC over MQTT.

Providers included with Pelix/iPOPO
This section gives more details about the usage of the discovery and transport providers included in Pelix/iPOPO.
You’ll need at least a discovery and a compatible transport provider for Pelix Remote Services to work.

Apart MQTT, the discovery and transport providers are independent and can be used with one another.

Multicast Discovery

Bundle pelix.remote.discovery.multicast

Factory pelix-remote-discovery-multicast-factory
Requires HTTP Service, Dispatcher Servlet

Libraries nothing (based on the Python Standard Library)

Pelix comes with a home-made UDP multicast discovery protocol, implemented in the pelix.remote.
discovery.multicast bundle. This is the original discovery protocol of Pelix/iPOPO and the most reliable
one in small local area networks. A Java version of this protocol is provided by the Cohorte Remote Services imple-
mentation.

This protocol consists in minimalist packets on remote service registration, update and unregistration. They mainly
contain the notification event type, the port of the HTTP server of the framework and the path to the dispatcher servlet.
The IP of the framework is the source IP of the multicast packet: this allows to get a valid address for frameworks on
servers with multiple network interfaces.

3.5. Reference Cards 71

https://redis.io
https://docs.python.org/3/library/xmlrpc.html
https://github.com/tcalmant/jsonrpclib/
https://github.com/isandlaTech/cohorte-remote-services
https://github.com/isandlaTech/cohorte-remote-services
https://github.com/isandlaTech/cohorte-remote-services

iPOPO Documentation, Release 0.7.0

This provider relies on the HTTP server and the dispatcher servlet. It doesn’t have external dependencies.

The bundle provides a pelix-remote-discovery-multicast—-factory iPOPO factory, which must be
instantiated to work. It can be configured with the following properties:

Property Default value | Description
multicast.group | 239.0.0.1 The multicast group (address) to join to send and receive discovery messages.
multicast.port 42000 The multicast port to listen to

To use this discovery provider, you’ll need to install the following bundles and instantiate the associated components:

Start the HTTP service with default parameters
install pelix.http.basic

start

instantiate pelix.http.service.basic.factory httpd

Install Remote Services Core
install pelix.remote.registry
start

install pelix.remote.dispatcher
start $7?

Instantiate the dispatcher servlet
instantiate pelix-remote-dispatcher-servlet-factory dispatcher-servlet

Install and start the multicast discovery with the default parameters
install pelix.remote.discovery.multicast

start

instantiate pelix-remote-discovery-multicast-factory discovery-mcast

mDNS Discovery

Bundle pelix.remote.discovery.mdns

Factory pelix-remote-discovery-zeroconf-factory
Requires HTTP Service, Dispatcher Servlet
Libraries pyzeroconf

The mDNS protocol, also known as Zeroconf, is a standard protocol based on multicast packets. It provides a Service
Discovery layer (mDNS-SD) based on the DNS-SD specification.

Unlike the home-made multicast protocol, this one doesn’t support service updates and gives troubles with service
unregistrations (frameworks lost, ...). As a result, it should be used only if it is required to interact with other mDNS
devices.

In order to work with the mDNS discovery from the Eclipse Communication Framework, the pyzeroconf library
must be patched: the . local. check in zeroconf .mdns.DNSQuest ion must be removed (around line 220).

This provider is implemented in the pelix.remote.discovery.mdns bundle, which provides a
pelix-remote—-discovery-zeroconf-factory iPOPO factory, which must be instantiated to work. It
can be configured with the following properties:

Property Default value Description
zeroconf.service.type | _pelix_rs._tcp.local. | Zeroconf service type of exported services
zeroconf.ttl 60 Time To Live of services (in seconds)

72 Chapter 3. User’s Guide

https://github.com/mcfletch/pyzeroconf

iPOPO Documentation, Release 0.7.0

To use this discovery provider, you’ll need to install the following bundles and instantiate the associated components:

Start the HTTP service with default parameters
install pelix.http.basic

start

instantiate pelix.http.service.basic.factory httpd

Install Remote Services Core
install pelix.remote.registry
start $°7

install pelix.remote.dispatcher
start $7?

Instantiate the dispatcher servliet
instantiate pelix-remote-dispatcher-servlet-factory dispatcher-servlet

Install and start the mDNS discovery with the default parameters
install pelix.remote.discovery.mdns

start

instantiate pelix-remote-discovery-zeroconf-factory discovery-mdns

Redis Discovery

Bundle pelix.remote.discovery.redis

Factory pelix-remote-discovery-redis-factory
Requires nothing (all is stored in the Redis database)
Libraries redis

The Redis discovery is the only one working well in Docker (Swarm) networks. It uses a Redis database to store the
host name of each framework and the description of each exported endpoint of each framework. Those description are
stored in the OSGi standard EDEF XML format, so it should be possible to implement a Java version of this discovery
provider. The Redis discovery uses the key events of the database to be notified by the latter when a framework or an
exported service is registered, updated, unregistered or timed out, which makes it both robust and reactive.

This provider is implemented in the pelix.remote.discovery.redis bundle, which provides a
pelix-remote—-discovery-redis—-factory iPOPO factory, which must be instantiated to work. It can be
configured with the following properties:

Property Default value | Description

redis.host localhost The hostname of the Redis server

redis.port 46379 The port the Redis server listens to

redis.db 0 The Redis database to use (integer)
redis.password | None Password to access the Redis database
heartbeat.delay | 10 Delay in seconds between framework heart beats

To use this discovery provider, you’ll need to install the following bundles and instantiate the associated components:

Install Remote Services Core
install pelix.remote.registry
start $°?

install pelix.remote.dispatcher
start

(continues on next page)

3.5. Reference Cards 73

https://pypi.python.org/pypi/redis
https://redis.io/

iPOPO Documentation, Release 0.7.0

(continued from previous page)

Install and start the Redis discovery with the default parameters
install pelix.remote.discovery.redis

start

instantiate pelix-remote-discovery-redis-factory discovery-redis

XML-RPC Transport

Bundle pelix.remote.xml_rpc

Factories pelix-xmlrpc-exporter-factory, pelix-xmlrpc-importer-factory
Requires HTTP Service

Libraries nothing (based on the Python Standard Library)

The XML-RPC transport is the first one having been implemented in Pelix/iPOPO. Its main advantage is that is doesn’t
depend on an external library, XML-RPC being supported by the Python Standard Library.

It has some troubles with complex and custom types (dictionaries, ...), but can be used without problems on primitive
types. The JSON-RPC transport can be preferred in most cases.

Like most of the transport providers, this one is split in two components: the exporter and the importer. Both must be
instantiated manually.

The exporter instance can be configured with the following property:

Property Default value | Description
pelix.http.path | /XML-RPC The path to the XML-RPC exporter servlet

To use this transport provider, you’ll need to install the following bundles and instantiate the associated components:

Start the HTTP service with default parameters
install pelix.http.basic

start

instantiate pelix.http.service.basic.factory httpd

Install Remote Services Core
install pelix.remote.registry
start

install pelix.remote.dispatcher
start $7

Install and start the XML-RPC importer and exporter with the default
parameters

install pelix.remote.xml_rpc

start $°?

instantiate pelix-xmlrpc-exporter-factory xmlrpc-exporter

instantiate pelix-xmlrpc—importer—-factory xmlrpc-importer

JSON-RPC Transport

Bundle pelix.remote.json_rpc
Factories pelix-jsonrpc-exporter-factory, pelix-jsonrpc-importer-factory

Requires HTTP Service

74 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

Libraries jsonrpclib-pelix (installation requirement of iPOPO)

The JSON-RPC transport is the recommended one in Pelix/iPOPO. It depends on an external library, jsonrpclib-pelix
which has no transient dependency. It has way less troubles with complex and custom types than the XML-RPC
transport, which eases the development of most of Pelix/iPOPO applications.

Like most of the transport providers, this one is split in two components: the exporter and the importer. Both must be
instantiated manually.

The exporter instance can be configured with the following property:

Property Default value | Description
pelix.http.path | /JSON-RPC The path to the JSON-RPC exporter servlet

To use this transport provider, you’ll need to install the following bundles and instantiate the associated components:

Start the HTTP service with default parameters
install pelix.http.basic
start $°?

instantiate pelix.http.service.basic.factory httpd

Install Remote Services Core
install pelix.remote.registry
start $°?

install pelix.remote.dispatcher
start $°7

Install and start the JSON-RPC importer and exporter with the default
parameters

install pelix.remote.json_rpc

start $°?

instantiate pelix-jsonrpc-exporter-factory Jjsonrpc-exporter

instantiate pelix-Jjsonrpc-importer-factory jsonrpc-importer

Jabsorb-RPC Transport

Bundle pelix.remote.transport.jabsorb_rpc

Factories pelix-jabsorbrpc-exporter-factory, pelix-jabsorbrpc-importer-factory
Requires HTTP Service

Libraries jsonrpclib-pelix (installation requirement of iPOPO)

The JABSORB-RPC transport is based on a variant of the JSON-RPC protocol. It adds Java typing hints to ease
unmarshalling on Java clients, like the Cohorte Remote Services implementation. The additional information comes
at small cost, but this transport shouldn’t be used when no Java frameworks are expected: it doesn’t provide more
features than JSON-RPC in a 100% Python environment.

Like the JSON-RPC transport, it depends on an external library, jsonrpclib-pelix which has no transient dependency.

Like most of the transport providers, this one is split in two components: the exporter and the importer. Both must be
instantiated manually.

The exporter instance can be configured with the following property:

Property Default value Description
pelix.http.path | /JABSORB-RPC | The path to the JABSORB-RPC exporter servlet

3.5. Reference Cards 75

https://github.com/tcalmant/jsonrpclib
https://github.com/tcalmant/jsonrpclib
https://github.com/tcalmant/jsonrpclib
https://github.com/isandlaTech/cohorte-remote-services
https://github.com/tcalmant/jsonrpclib

iPOPO Documentation, Release 0.7.0

To use this transport provider, you’ll need to install the following bundles and instantiate the associated components:

Start the HTTP service with default parameters
install pelix.http.basic

start $°?

instantiate pelix.http.service.basic.factory httpd

Install Remote Services Core
install pelix.remote.registry
start $°7

install pelix.remote.dispatcher
start $°7

Install and start the JABSORB-RPC importer and exporter with the default
parameters

install pelix.remote.transport.jabsorb_rpc

start $°?

instantiate pelix—-jabsorbrpc-exporter—-factory jabsorbrpc-exporter
instantiate pelix-jabsorbrpc-importer-factory jabsorbrpc-importer

MQTT discovery and MQTT-RPC Transport

Bundle pelix.remote.discovery.mqtt, pelix.remote.transport.mqtt_rpc

Factories pelix-remote-discovery-mgqtt-factory, pelix-mqttrpc-exporter-factory, pelix-mqttrpc-importer-
factory

Requires rnothing (everything goes through MQTT messages)
Libraries paho

Finally, the MQTT discovery and transport protocols have been developped as a proof of concept with the fabMSTIC
fablab of the Grenoble Alps University.

The idea was to rely on the lightweight MQTT messages to provide both discovery and transport mechanisms, and to
let them be handled by low-power devices like small Arduino boards. Mixed results were obtained: it worked but the
performances were not those intended, mainly in terms of latencies.

Those providers are kept in Pelix/iPOPO as they work and provide a non-HTTP way to communicate, but they won’t
be updated without new contributions (pull requests, ...).

They rely on the Eclipse Paho library, previously known as the Mosquitto library.

The discovery instance can be configured with the following properties:

Property Default value Description

mgqtt.host localhost Host of the MQTT server

mqtt.port 1883 Port of the MQTT server

topic.prefix pelix/{appid}/remote- Prefix of all MQTT messages (format string accepting the appid
services entry)

applica- None Application ID, to allow multiple applications on the same server

tion.id

The transport exporter and importer instances should be configured with the same mgtt .host and mgtt.port
properties as the discovery service.

To use the MQTT providers, you’ll need to install the following bundles and instantiate the associated components:

76 Chapter 3. User’s Guide

https://www.eclipse.org/paho/
http://fabmstic.liglab.fr/
https://www.eclipse.org/paho/
http://mosquitto.org/

iPOPO Documentation, Release 0.7.0

Install Remote Services Core
install pelix.remote.registry
start

install pelix.remote.dispatcher
start 57

Install and start the MQOTT discovery and the MOTT-RPC importer and exporter
with the default parameters

install pelix.remote.discovery.mgtt

start

instantiate pelix-remote-discovery-mgtt-factory mgttrpc-discovery

install pelix.remote.transport.mgtt_rpc

start $°?

instantiate pelix-mgttrpc-exporter—factory mgttrpc-exporter
instantiate pelix-mgttrpc-importer-factory mgttrpc-importer

API

Endpoints

ExportEndpoint objects are created by transport providers and stored in the registry of the exports dispatcher. It
is used by discovery providers to create a description of the endpoint to send over the network and suitable for the
import-side.

class pelix.remote.beans.ExportEndpoint (uid, fw_uid, configurations, name, svc_ref, service,
properties)
Represents an export end point (one per group of configuration types)

Parameters
* uid - Unique identified of the end point
e fw_uid - The framework UID
* configurations — Kinds of end point (xmlrpc, ...)
* name — Name of the end point
* svc_ref — ServiceReference of the exported service
* service - Instance of the exported service
* properties — Extra properties

Raises ValueError — Invalid UID or the end point exports nothing (all specifications have been
filtered)

get_properties ()
Returns merged properties

Returns Endpoint merged properties

make_import_properties ()
Returns the properties of this endpoint where export properties have been replaced by import ones

Returns A dictionary with import properties

rename (new_name)
Updates the endpoint name

3.5. Reference Cards 77

iPOPO Documentation, Release 0.7.0

Parameters new_name — The new name of the endpoint

configurations
Configurations of this end point

framework
Framework UID

instance
Service instance

name
Name of the end point

reference
Service reference

specifications
Returns the exported specifications

uid
End point unique identifier

ImportEndpoint objects are the description of an endpoint on the consumer side. They are given by the imports
registry to the transport providers on the import side.

class pelix.remote.beans.ImportEndpoint (uid, framework, configurations, name, specifica-

tions, properties)
Represents an end point to access an imported service

Parameters
* uid - Unique identified of the end point
* framework — UID of the framework exporting the end point (can be None)
* configurations - Kinds of end point (xmlrpc, ...)
* name — Name of the end point
* specifications — Specifications of the exported service
* properties — Properties of the service

configurations
Kind of end point

framework
UID of the framework exporting this end point

name
Name of the end point

properties
Properties of the imported service

specifications
Specifications of the service
uid
End point unique identifier

78 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

Core Services

The exports dispatcher service provides the pelix.remote.dispatcher (constant string stored in pelix.
remote.SERVICE_DISPATCHER) service, with the following API:

class pelix.remote.dispatcher.Dispatcher
Common dispatcher for all exporters

get_endpoint (uid)
Retrieves an end point description, selected by its UID. Returns None if the UID is unknown.

Parameters uid — UID of an end point
Returns An ExportEndpoint or None.

get_endpoints (kind=None, name=None)
Retrieves all end points matching the given kind and/or name

Parameters
* kind - A kind of end point
* name — The name of the end point
Returns A list of ExportEndpoint matching the parameters

The import registry service provides the pelix.remote.registry (constant string stored in pelix.remote.
SERVICE_REGISTRY) service, with the following API:

class pelix.remote.registry.ImportsRegistry
Registry of discovered end points. End points are identified by their UID

add (endpoint)
Registers an end point and notifies listeners. Does nothing if the endpoint UID was already known.

Parameters endpoint — An ImportEndpoint object
Returns True if the end point has been added

contains (endpoint)
Checks if an endpoint is in the registry

Parameters endpoint — An endpoint UID or an ITmportEndpoint object
Returns True if the endpoint is known, else False

lost_framework (uid)
Unregisters all the end points associated to the given framework UID

Parameters uid — The UID of a framework

remove (uid)
Unregisters an end point and notifies listeners

Parameters uid — The UID of the end point to unregister
Returns True if the endpoint was known

update (uid, new_properties)
Updates an end point and notifies listeners

Parameters
e uid - The UID of the end point

* new_properties — The new properties of the end point

3.5. Reference Cards 79

iPOPO Documentation, Release 0.7.0

Returns True if the endpoint is known, else False

3.5.10 Configuration Admin

Concept
The Configuration Admin service allows to easily set, update and delete the configuration (a dictionary) of managed
services.

The Configuration Admin service can be used by any bundle to configure a service, either by creating, updating or
deleting a Configuration object.

The Configuration Admin service handles the persistence of configurations and distributes them to their target services.

Two kinds of managed services exist: * Managed Services, which handle the configuration as is * Managed Service
Factories, which can handle multiple configuration of a kind

Note: Even if iPOPO doesn’t fully respect it, you can find details about the Configuration Admin Service Specification
in the chapter 104 of the OSGi Compendium Services Specification.

Note: This page is highly inspired from the Configuration Admin tutorial from the Apache Felix project.

Basic Usage
Here is a bery basic example of a managed service able to handle a single configuration. This configuration contains
a single entry: the length of a pretty printer.

The managed service must provide the pelix.configadmin.managed specification, associated to a persistent
ID (PID) identifying its configuration (service.pid).

The PID is just a string, which must be globally unique. Assuming a simple case where your pretty printer configurator
receives the configuration has a unique class name, you may well use that name.

So lets assume, our managed service is called PrettyPrinter and that name is also used as the PID. The class
would be:

class PrettyPrinter:
def updated(self, props):

mn

A configuration has been updated
if props is None:
Configuration have been deleted
pass
else:
Apply configuration from config admin
pass

Now, in your bundle activator’s start () method you can register PrettyPrinter as a managed service:

@BundleActivator
class Activator:
def _ _init__ (self):

(continues on next page)

80 Chapter 3. User’s Guide

http://felix.apache.org/documentation/subprojects/apache-felix-config-admin.html
http://felix.apache.org/

iPOPO Documentation, Release 0.7.0

(continued from previous page)

self.svc_reg = None

def start (self, context):
svc_props = {"service.pid": "pretty.printer"}
self.svc_reg = context.register_service(
"pelix.configadmin.managed", PrettyPrinter (), svc_props)

def stop(self, context):
if self.svc_reg is not None:
self.svc_reg.unregister ()
self.svc_reg = None

That’s more or less it. You may now go on to use your favourite tool to create and edit the configuration for the Pretty
Printer, for example something like this:

Get the current configuration
pid = "pretty.printer"
config = config_admin_svc.get_configuration (pid)
props = config.get_properties()
if props is None:
props = {}

Set properties
props.put ("key", "value")

Update the configuration
config.update (props)

After the call to update () the Configuration Admin service persists the new configuration data and sends an update
to the managed service registered with the service PID pretty.printer, which happens to be our PrettyPrinter
class as expected.

Managed Service Factory example

Registering a service as a Managed Service Factory means that it will be able to receive several different configuration
dictionaries. This can be useful when used by a Service Factory, that is, a service responsible for creating a distinct
instance of a service according to the bundle consuming it.

A Managed Service Factory needs to provide the pelix.configadmin.managed. factory specification, as
shown below:

class SmsSenderFactory:
def _ init_ (self):
self.existing = {}

def updated(pid, props):

mon

Called when a configuration has been created or updated
if pid in self.existing:

Service already exist

self.existing[pid] .configure (props)
else:

Create the service

svc = self.create_instance ()

(continues on next page)

3.5. Reference Cards 81

iPOPO Documentation, Release 0.7.0

(continued from previous page)

svc.configure (props)
self.existing[pid] = service

def deleted(pid):

mnn

Called when a configuration has been deleted

moon

self.existing[pid].close()
del self.existing([pid]

The example above shows that, differently from a managed service, the managed service factory is designed to manage
multiple instances of a service.

In fact, the updated method accept a PID and a dictionary as arguments, thus allowing to associate a certain config-
uration dictionary to a particular service instance (identified by the PID).

Note also that the managed service factory specification requires to implement (besides the getName method) a
deleted method: this method is invoked when the Configuration Admin service asks the managed service factory
to delete a specific instance.

The registration of a managed service factory follows the same steps of the managed service sample:

@BundleActivator
class Activator:
def init__ (self):
self.svc_reg = None

def start(self, context):
svc_props = {"service.pid": "sms.sender"}
self.svc_reg = context.register_service (
"pelix.configadmin.managed.factory", SmsSenderFactory/(),
SVC_props)

def stop(self, context):
if self.svc_reg is not None:
self.svc_reg.unregister ()
self.svc_reg = None

Finally, using the ConfigurationAdmin interface, it is possible to send new or updated configuration dictionaries to the
newly created managed service factory:

@BundleActivator
class Activator:
def _ init__ (self):
self.configs = {}

def start(self, context):
svc_ref = context.get_service_reference ("pelix.configadmin™)
if svc_ref is not None:
Get the configuration admin service
config_admin_svc = context.get_service (svc_ref)

Create a new configuration for the given factory
config = config_admin_svc.create_factory_configuration(

"sms.sender")

Update it

(continues on next page)

82 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

(continued from previous page)

props = {"key": "value"}
config.update (props)

Store it for future use
self.configs[config.get_pid()] = config

def stop(self, context):
Clear all configurations (for this example)
for config in self.configs:
config.delete()

self.configs.clear ()

3.5.11 EventAdmin service

Description

The EventAdmin service defines an inter-bundle communication mechanism.

Note: This service is inspired from the EventAdmin specification in OSGi, but without the Event class.

It is a publish/subscribe communication service, using the whiteboard pattern, that allows to send an event:
* the publisher of an event uses the EventAdmin service to send its event
* the handler (or subscriber or listener) publishes a service with filtering properties
An event is the association of:
¢ atopic, a URI-like string that defines the nature of the event
* a set of properties associated to the event

Some properties are defined by the EventAdmin service:

Property Type | Description

event.sender.framework.uid | str UID of the framework that emitted the event. Useful in remote services

event.timestamp float | Time stamp of the event, computed when the event is given to EventAdmin
Usage

Instantiation

The EventAdmin service is implemented in pelix.services.eventadmin bundle, as a single iPOPO
component. This component must be instantiated programmatically, by using the iPOPO service and the
pelix-services—eventadmin-factory factory name.

from pelix.ipopo.constants import use_ipopo
import pelix.framework

Start the framework (with 1POPO)
framework = pelix.framework.create_framework (['pelix.ipopo.core'])

(continues on next page)

3.5. Reference Cards 83

iPOPO Documentation, Release 0.7.0

(continued from previous page)

framework.start ()
context = framework.get_bundle_context ()

Install & start the EventAdmin bundle
context.install_bundle('pelix.services.eventadmin') .start ()

Get the 1POPO the service
with use_ipopo (context) as ipopo:
Instantiate the EventAdmin component
ipopo.instantiate ('pelix-services—eventadmin-factory',
'EventAdmin', {})

It can also be instantiated via the Pelix Shell:

$ install pelix.services.eventadmin

Bundle ID: 12

$ start 12

Starting bundle 12 (pelix.services.eventadmin)...

$ instantiate pelix-services-eventadmin-factory eventadmin
Component 'eventadmin' instantiated.

The EventAdmin component accepts the following property as a configuration:

Property Default value | Description
pool.threads | 10 Number of threads in the pool used for asynchronous delivery
Interfaces

EventAdmin service

The EventAdmin service provides the pelix.services.eventadmin specification:

class pelix.services.eventadmin.EventAdmin
The EventAdmin implementation

post (topic, properties=None)
Sends asynchronously the given event

Parameters
* topic - Topic of event
* properties — Associated properties

send (topic, properties=None)
Sends synchronously the given event

Parameters
* topic - Topic of event
* properties — Associated properties

Both send and post methods get the topic as first parameter, which must be a URI-like string, e.g. sensor/
temperature/changed and a dictionary as second parameter, which can be None.

When sending an event, each handler is notified with a different copy of the property dictionary, avoiding to propagate
changes done by a handler.

84 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

EventHandler service

An event handler must provide the pelix.services.eventadmin.handler specification, which defines by
the following method:

handle_event (topic, properties)
Called by the EventAdmin service to notify a handler of a new event

Parameters
* topic — The topic of the event (str)

* properties — The properties associated to the event (dict)

Warning: Events sent using the post () are delivered from another thread. It is unlikely but possible that
sometimes the handle_event () method may be called whereas the handler service has been unregistered, for
example after the handler component has been invalidated.

It is therefore recommended to check that the injected dependencies used in this method are not None before
handling the event.

An event handler must associate at least one the following properties to its service:

Prop- Type Description
erty
event.topicd_ist of | A list of strings that indicates the topics the topics this handler expects. EventAdmin supports
str “file name” filters, i.e. with » or ? jokers.
event.filter str A LDAP filter string that will be tested on the event properties
Example

In this example, a component will publish an event when it is validated or invalidated. These events will be:
* example/publisher/validated
* example/publisher/invalidated

The event handler component will provide a service with a topic filter that accepts both topics: example/
publisher/x

Publisher

The publisher requires the EventAdmin service, which specification is defined in the pelix.services module.

1POPO
from pelix.ipopo.decorators import =x
import pelix.ipopo.constants as constants

EventAdmin constants
import pelix.services

@ComponentFactory ('publisher—-factory')
Require the EventAdmin service
@Requires ('_event', pelix.services.SERVICE_EVENT_ADMIN)

(continues on next page)

3.5. Reference Cards 85

iPOPO Documentation, Release 0.7.0

(continued from previous page)

Inject our component name in a field
@Property (' _name', constants.IPOPO_INSTANCE_NAME)
Auto-instantiation

@Instantiate ('publisher')

class Publisher (object):

mmon

A sample publisher

mmn

def _ init_ (self):

mmn

Set up members, to be OK with PEP-8
mmmn

EventAdmin (injected)

self._event = None

Component name (injected property)
self._name = None

@Validate
def validate (self, context):

mon

Component validated

Send a "validated" event

self._event.send("example/publisher/validated",
{"name": self._name})

@Invalidate
def invalidate(self, context):

mon

Component invalidated

Post an "invalidated" event

self._event.send("example/publisher/invalidated",
{"name": self._name})

Handler

The event handler has no dependency requirement. It has to provide the EventHandler specification, which is defined
inthe pelix.services module.

1POPO
from pelix.ipopo.decorators import =
import pelix.ipopo.constants as constants

EventAdmin constants
import pelix.services

@ComponentFactory ('handler—-factory')

Provide the EventHandler service

@Provides (pelix.services.SERVICE_EVENT_HANDLER)

The event topic filters, injected as a component property that will be

propagated to its services

@Property ('_event_handler topic', pelix.services.PROP_EVENT_TOPICS,
['example/publisher/*"'])

(continues on next page)

86 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

(continued from previous page)

The event properties filter (optional, here set to None by default)
@Property (' _event handler filter', pelix.services.PROP_EVENT_FILTER)
Auto-instantiation

@Instantiate ('handler')

class Handler (object) :

mmn

A sample event handler

mmmn

def _ init_ (self):

mmn

Set up members

mmn

self._event_handler_topic = None
self._event_handler_filter = None

def handle_event (self, topic, properties):

mon

Event received
print ('Got a {0} event from {1} at {2}"' \
.format (topic, properties|['name'],
properties|[pelix.services.EVENT_PROP_TIMESTAMP]))

It is recommended to define an event filter property, even if it is set to None by default: it allows to customize the
event handler when it is instantiated using the iPOPO API:

This handler will be notified only of events with a topic matching

'example/publisher/x' (default value of 'event.topics'), and in which

the 'name' property is 'foobar'.

ipopo.instantiate ('handler-factory', 'customized-handler',
{pelix.services.PROP_EVENT_FILTER: ' (name=foobar)"'})

Shell Commands

It is possible to send events from the Pelix shell, after installing the pelix.shell.eventadmin bundle.

This bundle defines two commands, in the event scope:

Command Description

post <topic> [<property=value> [... Posts an event on the given topic, with the given properties
1]

send <topic> [<property=value> [... Sends an event on the given topic, with the given proper-
1] ties

Here is a sample shell session, considering the sample event handler above has been started. It installs and start the
EventAdmin shell bundle:

$ install pelix.shell.eventadmin

13

$ start 13

$ event.send example/publisher/activated name=foobar

Got a example/publisher/activated from foobar at 1369125501.028135

3.5. Reference Cards 87

iPOPO Documentation, Release 0.7.0

Events printer utility component

A pelix-misc-eventadmin-printer-factory component factory is provided by the pelix.misc.
eventadmin_printer bundle. It can be used to instantiate components that will print and/or log the event match-
ing a given filter.

Here is a Pelix Shell snippet to instantiate a printer and to send it some events:

$ install pelix.shell.eventadmin

13

$ start 13

$ install pelix.misc.eventadmin_printer

14

$ start 14

$ instantiate pelix-misc-eventadmin-printer-factory printerA event.topics=foo/x*

Component 'printerA' instantiated.

$ instantiate pelix-misc-eventadmin-printer-factory printerB evt.log=True event.
—topics=foo/bar/*

Component 'printerB' instantiated.

$ send foo/abc

Event: foo/abc

Properties:

{'event.sender.framework.uid': 'aal80e9b-bb45-4cbf-8092-d45fbel24064f"',
'event.timestamp': 1492698306.1903257}

$ send foo/bar/def

Event: foo/bar/def

Properties:

{'event.sender.framework.uid': 'aal80e9b-bb45-4cbf-8092-d45fbel2464f",
'event.timestamp': 1492698324.9549854}

Event: foo/bar/def

Properties:

{'event.sender.framework.uid': 'aal80e9b-bb45-4cbf-8092-d45fbel24064f"',
'event.timestamp': 1492698324.9549854}

The second event is printed twice as it is handled by both printers.

MQTT Bridge

Pelix provides a bridge to send EventAdmin events to an MQTT server and vice-versa. This can be used to send events
between various Pelix frameworks, without the need of the remote services layer, or between different entities sharing
an MQTT server.

The component factory, pelix-services-eventadmin-mgtt-factory, is provided by the pelix.
services.eventadmin_mgtt bundle. It can be configured with the following properties:

Property Default Value Description

event.topics * The filter to select the events to share

mgqtt.host localhost The host name of the MQTT server

mgqtt.port 1883 The port the MQTT server is bound to

mgqtt.topic.prefix | /pelix/eventadmin | The prefix to add to events before sending them over MQTT

Events handled by this component, i.e. matching the filter given at instantiation time, and having the event.
propagate property set to any value (even False) will be sent as messages to the MQTT server with the following
modifications:

¢ the MQTT message topic will be the event topic prefixed by the value of the mgtt .topic.prefix property

88 Chapter 3. User’s Guide

iPOPO Documentation, Release 0.7.0

« if the event topic starts with a slash (/), apelix.eventadmin.mgtt.start_slash property is added to
the event and is set to True

* apelix.eventadmin.mgtt.source is added to the event, containing the UUID of the emitting frame-
work, to avoid loops.

The event properties are then converted to JSON and used as the body the MQTT message.

When an MQTT message starting with the configured prefix is received, it is converted back to an event, given to
EventAdmin. Loopback messages are detected and ignored to avoid loops.

3.5. Reference Cards 89

iPOPO Documentation, Release 0.7.0

90

Chapter 3. User’s Guide

CHAPTER 4

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

4.1 API

This part of the documentation covers all the core classes and services of iPOPO.

4.1.1 BundleContext Object

The bundle context is the link between a bundle and the framework. It’s by the context that you can register services,
install other bundles.

class pelix.framework.BundleContext (framework, bundle)
The bundle context is the link between a bundle and the framework. It is unique for a bundle and is created by
the framework once the bundle is installed.

Parameters
* framework — Hosting framework
* bundle - The associated bundle

add_bundle_ listener (listener)
Registers a bundle listener, which will be notified each time a bundle is installed, started, stopped or
updated.

The listener must be a callable accepting a single parameter:

 event — The description of the event (a BundleEvent object).

Parameters listener — The bundle listener to register

Returns True if the listener has been registered, False if it already was

91

iPOPO Documentation, Release 0.7.0

add_framework_stop_listener (listener)
Registers a listener that will be called back right before the framework stops

The framework listener must have a method with the following prototype:

def framework_stopping(self):

rrr

No parameter given

rro

#

Parameters listener — The framework stop listener
Returns True if the listener has been registered
add_service_listener (listener, ldap_filter=None, specification=None)
Registers a service listener

The service listener must have a method with the following prototype:

def service_changed(self, event):

Called by Pelix when some service properties changes

event: A ServiceEvent object

rrr

#

Parameters
* listener - The listener to register

* ldap_filter - Filter that must match the service properties (optional, None to accept
all services)

» specification — The specification that must provide the service (optional, None to
accept all services)

Returns True if the listener has been successfully registered
get_all_service_references (clazz, ldap_filter=None)

Returns an array of ServiceReference objects. The returned array of ServiceReference objects contains
services that were registered under the specified class and match the specified filter expression.

Parameters
* clazz - Class implemented by the service
e ldap_filter — Service filter
Returns The sorted list of all matching service references, or None

get_bundle (bundle_id=None)

Retrieves the Bundle object for the bundle matching the given ID (int). If no ID is given (None), the
bundle associated to this context is returned.

Parameters bundle_id — A bundle ID (optional)
Returns The requested Bundle object

Raises BundleException — The given ID doesn’t exist or is invalid

92

Chapter 4. API Reference

iPOPO Documentation, Release 0.7.0

get_bundles ()
Returns the list of all installed bundles

Returns A list of Bundle objects

get_framework ()
Returns the Framework that created this bundle context

Returns The Framework object

get_property (name)
Returns the value of a property of the framework, else returns the OS environment value.

Parameters name — A property name

get_service (reference)
Returns the service described with the given reference

Parameters reference — A ServiceReference object
Returns The service object itself

get_service_objects (reference)
Returns the ServiceObjects object for the service referenced by the specified ServiceReference object.

Parameters reference — Reference to a prototype service factory
Returns An intermediate object to get more instances of a service

get_service_reference (clazz, ldap_filter=None)
Returns a ServiceReference object for a service that implements and was registered under the specified
class

Parameters
* clazz - The class name with which the service was registered.
* ldap_filter — A filter on service properties

Returns A service reference, None if not found

get_service_references (clazz, ldap_filter=None)
Returns the service references for services that were registered under the specified class by this bundle and
matching the given filter

Parameters
* clazz - The class name with which the service was registered.
* ldap_filter — A filter on service properties

Returns The list of references to the services registered by the calling bundle and matching the
filters.

install_bundle (name, path=None)
Installs the bundle (module) with the given name.

If a path is given, it is inserted in first place in the Python loading path (sys.path). All modules loaded
alongside this bundle, i.e. by this bundle or its dependencies, will be looked after in this path in priority.

Note: Before Pelix 0.5.0, this method returned the ID of the installed bundle, instead of the Bundle object.

4.1.

API 93

iPOPO Documentation, Release 0.7.0

Warning: The behavior of the loading process is subject to changes, as it does not allow to safely run
multiple frameworks in the same Python interpreter, as they might share global module values.

Parameters
* name — The name of the bundle to install
* path — Preferred path to load the module (optional)
Returns The Bundle object of the installed bundle
Raises BundleException — Error importing the module or one of its dependencies
install_package (path, recursive=False)

Installs all the modules found in the given package (directory). It is a utility method working like
install_visiting (), with a visitor accepting every module found.

Parameters
* path — Path of the package (folder)
¢ recursive — If True, installs the modules found in sub-directories

Returns A 2-tuple, with the list of installed bundles (Bundle) and the list of the names of the
modules which import failed.

Raises ValueError — The given path is invalid

install_wvisiting (path, visitor)
Looks for modules in the given path and installs those accepted by the given visitor.

The visitor must be a callable accepting 3 parameters:
* fullname — The full name of the module
* is_package — If True, the module is a package

* module_path — The path to the module file

Parameters
e path — Root search path (folder)
* visitor — The visiting callable

Returns A 2-tuple, with the list of installed bundles (BundIe) and the list of the names of the
modules which import failed.

Raises ValueError - Invalid path or visitor
register_service (clazz, service, properties, send_event=True, factory=False, prototype=False)
Registers a service

Parameters
* clazz — Class or Classes (list) implemented by this service
* service - The service instance
» properties — The services properties (dictionary)
* send_event - If not, doesn’t trigger a service registered event

» factory - If True, the given service is a service factory

94

Chapter 4. API Reference

iPOPO Documentation, Release 0.7.0

* prototype - If True, the given service is a prototype service factory (the factory argu-
ment is considered True)

Returns A ServiceRegistration object
Raises BundleException — An error occurred while registering the service

remove_bundle_ listener (listener)
Unregisters the given bundle listener

Parameters listener — The bundle listener to remove
Returns True if the listener has been unregistered, False if it wasn’t registered

remove_framework_stop_listener (listener)
Unregisters a framework stop listener

Parameters listener — The framework stop listener
Returns True if the listener has been unregistered

remove_service_listener (listener)
Unregisters a service listener

Parameters listener — The service listener
Returns True if the listener has been unregistered

unget_service (reference)
Disables a reference to the service

Returns True if the bundle was using this reference, else False

4.1.2 Framework Object

The Framework object is a singleton and can be accessed using get_bundle (0). This class inherits the methods
from pelix. framework.Bundle.

class pelix.framework.Framework (properties=None)

The Pelix framework (main) class. It must be instantiated using FrameworkFactory
Sets up the framework.
Parameters properties — The framework properties

add_property (name, value)
Adds a property to the framework if it is not yet set.

If the property already exists (same name), then nothing is done. Properties can’t be updated.
Parameters
* name — The property name
* value - The value to set
Returns True if the property was stored, else False

delete (force=False)
Deletes the current framework

Parameters force — If True, stops the framework before deleting it

Returns True if the framework has been delete, False if is couldn’t

4.1.

API 95

iPOPO Documentation, Release 0.7.0

Finds all services references matching the given filter.
Parameters
¢ clazz - Class implemented by the service
e ldap_filter — Service filter
* only_one — Return the first matching service reference only

Returns A list of found reference, or None

find_service_references (clazz=None, ldap_filter=None, only_one=False)

Raises BundleException — An error occurred looking for service references

get_bundle_by_id (bundle_id)

Retrieves the bundle with the given ID
Parameters bundle_id - ID of an installed bundle
Returns The requested bundle

Raises BundleException — The ID is invalid

get_bundle_by_name (bundle_name)

Retrieves the bundle with the given name
Parameters bundle name — Name of the bundle to look for

Returns The requested bundle, None if not found

get_bundles ()

Returns the list of all installed bundles

Returns the list of all installed bundles

get_properties ()

Retrieves a copy of the stored framework properties.

get_property (name)

Retrieves a framework or system property. As framework properties don’t change while it’s running, this

method don’t need to be protected.

Parameters name — The property name

get_property_keys ()

Returns an array of the keys in the properties of the service

Returns An array of property keys.

get_service (bundle, reference)

Retrieves the service corresponding to the given reference
Parameters
* bundle — The bundle requiring the service
» reference - A service reference
Returns The requested service
Raises
* BundleException — The service could not be found

* TypeError — The argument is not a ServiceReference object

96

Chapter 4. API Reference

iPOPO Documentation, Release 0.7.0

get_symbolic_name ()
Retrieves the framework symbolic name

Returns Always “pelix.framework™

install_bundle (name, path=None)
Installs the bundle with the given name

Note: Before Pelix 0.5.0, this method returned the ID of the installed bundle, instead of the Bundle object.

WARNING: The behavior of the loading process is subject to changes, as it does not allow to safely run
multiple frameworks in the same Python interpreter, as they might share global module values.

Parameters

* name — A bundle name

* path — Preferred path to load the module
Returns The installed Bundle object
Raises BundleException — Something happened

install_package (path, recursive=False, prefix=None)
Installs all the modules found in the given package

Parameters

* path — Path of the package (folder)

* recursive — If True, install the sub-packages too

¢ prefix — (internal) Prefix for all found modules
Returns A 2-tuple, with the list of installed bundles and the list of failed modules names
Raises ValueError — Invalid path

install_visiting (path, visitor, prefix=None)
Installs all the modules found in the given path if they are accepted by the visitor.

The visitor must be a callable accepting 3 parameters:
e fullname: The full name of the module
* is_package: If True, the module is a package

e module_path: The path to the module file

Parameters
* path — Root search path
e visitor — The visiting callable
* prefix — (internal) Prefix for all found modules
Returns A 2-tuple, with the list of installed bundles and the list of failed modules names
Raises ValueError — Invalid path or visitor
register_service (bundle, clazz, service, properties, send_event, factory=False, prototype=False)
Registers a service and calls the listeners
Parameters

* bundle — The bundle registering the service

4.1.

API 97

iPOPO Documentation, Release 0.7.0

* clazz — Name(s) of the interface(s) implemented by service

* service - The service to register

* properties — Service properties

* send_event - If not, doesn’t trigger a service registered event
» factory - If True, the given service is a service factory

* prototype — If True, the given service is a prototype service factory (the factory argu-
ment is considered True)

Returns A ServiceRegistration object
Raises BundleException — An error occurred while registering the service

start ()
Starts the framework

Returns True if the bundle has been started, False if it was already running
Raises BundleException — A bundle failed to start

stop ()
Stops the framework

Returns True if the framework stopped, False it wasn’t running

uninstall ()
A framework can’t be uninstalled

Raises BundleException — This method must not be called

uninstall bundle (bundle)
Ends the uninstallation of the given bundle (must be called by Bundle)

Parameters bundle — The bundle to uninstall
Raises BundleException — Invalid bundle

unregister_service (registration)
Unregisters the given service

Parameters registration — A ServiceRegistration to the service to unregister
Raises BundleException — Invalid reference

update ()
Stops and starts the framework, if the framework is active.

Raises BundleException — Something wrong occurred while stopping or starting the frame-
work.

wait_for_stop (timeout=None)
Waits for the framework to stop. Does nothing if the framework bundle is not in ACTIVE state.

Uses a threading.Condition object
Parameters timeout — The maximum time to wait (in seconds)

Returns True if the framework has stopped, False if the timeout raised

98 Chapter 4. API Reference

iPOPO Documentation, Release 0.7.0

4.1.3 Bundle Object

This object gives access to the description of an installed bundle. It is useful to check the path of the source module,
the version, etc.

class pelix.framework.Bundle (framework, bundle_id, name, module_)

Represents a “bundle” in Pelix
Sets up the bundle descriptor
Parameters
» framework — The host framework
e bundle_id — The ID of the bundle in the host framework
* name — The bundle symbolic name
* module — The bundle module

get_bundle_context ()
Retrieves the bundle context

Returns The bundle context

get_bundle_id()
Retrieves the bundle ID

Returns The bundle ID

get_location()
Retrieves the location of this module

Returns The location of the Pelix module, or an empty string

get_module ()
Retrieves the Python module corresponding to the bundle

Returns The Python module

get_registered_services ()
Returns this bundle’s ServiceReference list for all services it has registered or an empty list

The list is valid at the time of the call to this method, however, as the Framework is a very dynamic
environment, services can be modified or unregistered at any time.

Returns An array of ServiceReference objects
Raises BundleException — If the bundle has been uninstalled

get_services_in_use()
Returns this bundle’s ServiceReference list for all services it is using or an empty list. A bundle is consid-
ered to be using a service if its use count for that service is greater than zero.

The list is valid at the time of the call to this method, however, as the Framework is a very dynamic
environment, services can be modified or unregistered at any time.

Returns An array of ServiceReference objects
Raises BundleException — If the bundle has been uninstalled

get_state()
Retrieves the bundle state

Returns The bundle state

4.1.

API 99

iPOPO Documentation, Release 0.7.0

get_symbolic_name ()
Retrieves the bundle symbolic name (its Python module name)

Returns The bundle symbolic name

get_version ()
Retrieves the bundle version, using the ___version__ or _ _version_info__ attributes of its mod-
ule.

Returns The bundle version, “0.0.0” by default

start ()
Starts the bundle. Does nothing if the bundle is already starting or active.

Raises BundleException — The framework is not yet started or the bundle activator failed.

stop ()
Stops the bundle. Does nothing if the bundle is already stopped.

Raises BundleException — The bundle activator failed.

uninstall ()
Uninstalls the bundle

update ()
Updates the bundle

ACTIVE = 32
The bundle is now running

INSTALLED = 2
The bundle is installed but not yet resolved

RESOLVED = 4
The bundle is resolved and is able to be started

STARTING = 8
The bundle is in the process of starting

STOPPING = 16
The bundle is in the process of stopping

UNINSTALLED = 1
The bundle is uninstalled and may not be used

100

Chapter 4. API Reference

CHAPTER B

Additional Notes

Design notes, legal information and changelog are here for the interested.

5.1 Who uses iPOPO ?

If you want to add your name here, send a mail on the ipopo-users mailing list.

5.1.1 Cohorte Technologies (isandlaTech)

Cohorte Technologies is the main sponsor and user of iPOPO. It uses iPOPO as the basis of all its core developments,
like the Cohorte Framework.

5.1.2 G2ELab / G-Scop

4 .
H -
]
4@ Grenoble Génie Electrique . ..
' & Grenoble Electrical Engineering .y
n [} | |

PREDIS is a complex of several plat-
forms dedicated for research and education. These platforms gather many industrials and academic partners working
around emerging axes of electrical engineering and energy management. PREDIS platforms are part of the Ense3
school which trains high-level engineers and doctors able to take up the challenges associated with the new energy
order, with the increasing demand of water, both in quantity and quality, and with the sustainable development and
country planning.

101

http://groups.google.com/group/ipopo-users
http://cohorte-technologies.com/
http://cohorte-technologies.com/
http://cohorte.github.io/
http://www.g2elab.grenoble-inp.fr/
http://www.g-scop.grenoble-inp.fr/
http://www.g2elab.grenoble-inp.fr/plateformes/plateforme-predis-196107.kjsp

iPOPO Documentation, Release 0.7.0

The PREDIS Smart Building platform is mainly focused on energy management in buildings such as offices. Two
laboratories are developing their research activities in Predis, the Grenoble Electrical Engineering lab (G2Elab) and
the Design and Production Sciences laboratories (G-Scop).

The main topics studied in PREDIS SB are:
¢ Multi-sensor monitoring
 User activities and their energy impact analysis
* Multi-physical modelling, measurement handle and sensitivity analysing

* Optimal control strategies development.

5.1.3 Polytech Grenoble / AIR

Al
- L 10)
P 0 L Y T E c H Amblent Intelligerce Room
GRENOBLE ©
|— U —I AIR means Ambient Intelligence Room.

Ambient intelligence (Aml) is now part of the everyday world of users. It is found in all areas of activity: intelligent
building with energy control and maintenance, intelligent electrical grid (smart grid), health care with home care,
transportation and supply chain, public and private security, culture and entertainment (infotainment) with serious
games, ...

The Aml applications development relies primarily pooling of expertise in many areas of computer science and elec-
tronics which are generally purchased separately in university curricula and engineering schools. Aml education
focuses on developing applications for a wide range of smart objects (the IT server 3G user terminal and the on-board
sensor Zigbee/6LoWPAN instrumenting the physical environment). This teaching can be done properly only in the
context of experimental practice through group projects and student assignments for various application areas. The
experiments can achieve scaled in specialized rooms.

The AIR platform is a fablab (Fabrication Laboratory) for engineering students and Grenoble students to invent,
create and implement projects and application objects ambient intelligence through their training. The platform of the
Grenoble Alps University is housed in the Polytech Grenoble building. AIR is an educational platform of the labex
Persyval.

5.2 Release Notes

5.2.1 iPOPO 0.7.0

Release Date 2017-12-30

Project

* Removed Python 2.6 compatibility code
* New version of the logo, with SVG sources in the repository

¢ Added some tests for install_package ()

102 Chapter 5. Additional Notes

http://www.g2elab.grenoble-inp.fr/plateformes/plateforme-predis-196107.kjsp
http://www.g2elab.grenoble-inp.fr/
http://www.g-scop.grenoble-inp.fr/
http://www.polytech-grenoble.fr/
http://air.imag.fr/
http://air.imag.fr/
https://en.wikipedia.org/wiki/Fab_lab
http://www.univ-grenoble-alpes.fr/
http://www.polytech-grenoble.fr/
http://www.persyval-lab.org/
http://www.persyval-lab.org/

iPOPO Documentation, Release 0.7.0

Pelix

* When a bundle is stopped, the framework now automatically releases the services it consumed. This was re-
quired to avoid stale references when using (prototype) service factories. WARNING: this can lead to issues if
you were using stale references to pass information from one bundle version to another (which is bad).

* Added support for Prototype Service Factories, which were missing from issue Service Factories (#75).
* Handle deprecation of the imp module (see #85)

¢ Added a delete () method to the Framework class. The FrameworkFactory class can now be fully
avoided by developers.

5.2.2 iPOPO 0.6.5

Release Date 2017-09-17

Project
* Project documentation migrated to Read The Docs as the previous documentation server crashed. All references
to the previous server (coderxpress.net) have been removed.
* The documentation is being completely rewritten while it is converted from Dokuwiki to Sphinx.

* Removed Pypy 3 from Travis-CI/Tox tests, as it is not compatible with pip.

Pelix
* The import path normalization now ensures that the full path of the initial working directory is stored in the
path, and that the current working directory marker (empty string) is kept as the first entry of the Python path.
* Merged pull request #65, to ignore import errors when normalizing the Python path.

* Merged pull request #68, correcting the behaviour of the thread pool.

iPOPO

* The @vValidate method of components is now always called after the bundle activator has returned. (#66)

* Added a get_instance (name) method to access to the component instance object by its name. (#74)

HTTP

¢ Added some utility methods to Ht tpServletRequest:

— get_command () : get the HTTP command of the request

— get_prefix_path (): get the servlet prefix path

— get_sub_path () : get the part of the path corresponding to the servlet (i.e. without the prefix path)
* get_servlet () now returns the servlet prefix along with the servlet and the server parameters.

e Added apelix.https service property and an is_https () service method to indicate that the server uses
HTTPS.

5.2. Release Notes 103

https://github.com/tcalmant/ipopo/issues/75
https://ipopo.readthedocs.io/
https://github.com/tcalmant/ipopo/pull/65
https://github.com/tcalmant/ipopo/pull/68
https://github.com/tcalmant/ipopo/issues/66
https://github.com/tcalmant/ipopo/issues/74

iPOPO Documentation, Release 0.7.0

e Added a utility module, pelix.http.routing, which eases the routing of HTTP requests whith decorators
like QHt tp, @HttpGet...

* Merged pull request #70, avoiding remote HTTP servlets to be used by the local HTTP server.
Remote Services

* JSON-RPC and XML-RPC transports providers now support HTTPS.

* Added a Redis-based discovery provider, working with all HTTP-based transport providers.
Shell

* Added the Configuration Handler, which allows to give a JSON file to set the initial configuration of a frame-
work: properties, bundles, instances, ...

5.2.3 iPOPO 0.6.4

Release Date 2016-06-12

iPOPO

* Added @RequiresVariableFilter, which works like @Requires but also supports the use of compo-
nent properties as variables in LDAP filter.

* Added @HiddenProperty, which extends @Property, but ensures that the property key and value won’t
be seen in the description API nor in the shell. (it will stay visible using the standard reflection API of Python)

HTTP Service
e The HTTP basic component now support HTTPS. It is activated when given two files (a certificate and a key) in

its component properties. A password can also be given if the key file is encrypted. This is a prototype feature
and should be used carefully. Also, it should not be used with remote services.

Services
* A new log service has been added to this version, though the pelix.misc.log bundle. It provides the OSGi
API to log traces, but also keeps track of the traces written with the 1ogging module. The log entries can be

accessed locally (but not through remote services). They can be printed in the shell using commands provided
by pelix.shell.log.

5.2.4 iPOPO 0.6.3

Release Date 2015-10-23

104 Chapter 5. Additional Notes

https://github.com/tcalmant/ipopo/pull/70
https://redis.io/

iPOPO Documentation, Release 0.7.0

Project

* iPOPO now has a logo ! (thanks to @debbabi)
« README file has been rewritten
* Better PEP-8 compliance

» Updated jsonrpclib-pelix requirement version to 0.2.6

Framework

» Optimization of the service registry (less dictionaries, use of sets, ...)

e Added the hide_bundle_services () to the service registry. It is by the framework to hide the services of
a stopping bundle from get__service_reference methods, and before those services will be unregistered.

* Removed the deprecated ServiceEvent .get_type () method
iPOPO

* Optimization of StoredInstance (handlers, use of sets, ...)

HTTP Service

e Added a is_header_set () method to the HTTPServletResponse bean.
* Response headers are now sent on end_headers (), not on set_header (), to avoid duplicate headers.

* The request queue size of the basic HTTP server can now be set as a component property (pelix.http.
request_queue_size)

Remote Services

* Added support for keyword arguments in most of remote services transports (all except XML-RPC)

e Added support for pelix.remote.export.only and pelix.remote.export.none service prop-
erties. pelix.remote.export.only tells the exporter to export the given specifications only, while
pelix.remote.export.none forbids the export of the service.

Shell

* The pelix.shell.console module can now be run as a main script

Added the report shell command

Added the name of varargs in the signature of commands
 Corrected the signature shown in the help description for static methods
* Corrected the thread and threads shell commands for Pypy

Utilities

¢ Updated the MQTT client to follow the new API of Eclipse Paho MQTT Client

5.2. Release Notes 105

iPOPO Documentation, Release 0.7.0

Tests

* Travis-CI: Added Python 3.5 and Pypy3 targets

* Better configuration of coverage

* Added tests for the remote shell

* Added tests for the MQTT client and for MQTT-RPC

5.2.5 iPOPO 0.6.2

Release Date 2015-06-17

iPOPO

* The properties of a component can be updated when calling the retry_erroneous () method. This allows
to modify the configuration of a component before trying to validate it again (HTTP port, ...).

e The get_instance_details () dictionary now always contains a filter entry for each of the component
requirement description, even if not filter has been set.

HTTP Service

¢ Protection of the ServletRequest .read_data () method against empty or invalid Content-Length
headers

Shell

* The ipopo.retry shell command accepts properties to be reconfigure the instance before trying to validate
it again.

* The bundle commands (start, stop, update, uninstall) now print the name of the bundle along with its ID.

* The threads and threads shell commands now accept a stack depth limit argument.

5.2.6 iPOPO 0.6.1

Release Date 2015-04-20

iPOPO

» The stack trace of the exception that caused a component to be in the ERRONEOUS state is now kept, as a string.
It can be seen through the instance shell command.

Shell
* The command parser has been separated from the shell core service. This allows to create custom shells without
giving access to Pelix administration commands.

¢ Added cd and pwd shell commands, which allow changing the working directory of the framework and printing
the current one.

106 Chapter 5. Additional Notes

iPOPO Documentation, Release 0.7.0

* Corrected the encoding of the shell output string, to avoid exceptions when printing special characters.

Remote Services

¢ Corrected a bug where an imported service with the same endpoint name as an exported service could be
exported after the unregistration of the latter.

5.2.7 iPOPO 0.6.0

Release Date 2015-03-12

Project
* The support of Python 2.6 has been removed
Utilities

* The XMPP bot class now supports anonymous connections using SSL or StartTLS. This is a workaround for
issue 351 of SleekXMPP.

5.2.8 iPOPO 0.5.9

Release Date 2015-02-18

Project

* iPOPO now works with IronPython (tested inside Unity 3D)

iPOPO

Components raising an error during validation goes in the ERRONEOUS state, instead of going back to
INVALID. This avoids trying to validate them automatically.

The retry_erroneous () method of the iPOPO service and the ret ry shell command allows to retry the
validation of an ERRONEOUS component.

The @SingletonFactory decorator can replace the @ComponentFactory one. It ensures that only one
component of this factory can be instantiated at a time.

The @Temporal requirement decorator allows to require a service and to wait a given amount of time for its
replacement before invalidating the component or while using the requirement.

* @RequiresBest ensures that it is always the service with the best ranking that is injected in the component.

The @PostRegistration and @PreUnregistration callbacks allows the component to be notified
right after one of its services has been registered or will be unregistered.

5.2. Release Notes 107

https://github.com/fritzy/SleekXMPP/issues/351
http://sleekxmpp.com/

iPOPO Documentation, Release 0.7.0

HTTP Service

* The generated 404 page shows the list of registered servlets paths.
* The 404 and 500 error pages can be customized by a hook service.

* The default binding address is back to “0.0.0.0” instead of “localhost” (for those who used the development
version).

Utilities

e The ThreadPool class is now a cached thread pool. It now has a minimum and maximum number of threads:
only the required threads are alive. A thread waits for a task during 60 seconds (by default) before stopping.

5.2.9 iPOPO 0.5.8

Release Date 2014-10-13

Framework
* FrameworkFactory.delete_framework () can be called with None or without argument. This sim-
plifies the clean up afters tests, etc.

* The list returned by Framework .get_bundles () is always sorted by bundle ID.

iPOPO

* Added the immediate_rebind option to the @Requires decorator. This indicates iPOPO to not invalidate
then re-validate a component if a service can replace an unbound required one. This option only applies to
non-optional, non-aggregate requirements.

Shell
* The I/O handler is now part of a ShellSession bean. The latter has the same API as the I/O handler so there
is no need to update existing commands. I/O Handler write methods are now synchronized.

* The shell supports variables as arguments, e.g. echo S$var. See string. Template for more information. The
Template used in Pelix Shell allows . (dot) in names.

* A special variable $? stores the result of the last command which returned a result, i.e. anything but None or
False.

¢ Added set and unset commands to work with variables
* Added the run command to execute a script file.

* Added protection against At t ributeError in threads and thread

5.2.10 iPOPO 0.5.7

Release Date 2014-09-18

108 Chapter 5. Additional Notes

https://docs.python.org/3/library/string.html#template-strings

iPOPO Documentation, Release 0.7.0

Project

* Code review to be more PEP-8 compliant

¢ jsonrpclib-pelix is now an install requirement (instead of an optional one)

Framework
* Forget about previous global members when calling Bundle.update (). This ensures to have a fresh dictio-
nary of members after a bundle update

e Removed from pelix.constants import * in pelix.framework: only use pelix.
constants to access constants

Remote Services

¢ Added support for endpoint name reuse

* Added support for synonyms: specifications that can be used on the remote side, or which describe a specifica-
tion of another language (e.g. a Java interface)

* Added supportforapelix.remote.export.reject service property: the specifications it contains won’t
be exported, event if indicated in service.exported.interfaces.

JABSORB-RPC:
— Use the common dispatch () method, like JSON-RPC
MQTT(-RPC):

— Explicitly stop the reading loop when the MQTT client is disconnecting

— Handle unknown correlation ID

Shell

¢ Added a 1oglevel shell command, to update the log level of any logger
* Added a ——verbose argument to the shell console script

* Remote shell module can be ran as a script

HTTP Service

* Remove double-slashes when looking for a servlet

XMPP

¢ Added base classes to write a XMPP client based on SleekXMPP
¢ Added a XMPP shell interface, to control Pelix/iPOPO from XMPP

5.2. Release Notes 109

https://pypi.python.org/pypi/jsonrpclib-pelix
http://sleekxmpp.com/

iPOPO Documentation, Release 0.7.0

Miscellaneous

* Added an IPv6 utility module, to setup double-stack and to avoids missing constants bugs in Windows versions
of Python

* Added a EventData class: it acts like Event, but it allows to store a data when setting the event, or to raise
an exception in all callers of wait ()

* Added a CountdownEvent class, an Event which is set until a given number of calls to step () is reached

* threading.Future class now supports a callback methods, to avoid to actively wait for a result.

5.2.11 iPOPO 0.5.6

Release Date 2014-04-28

Project

* Added samples to the project repository

* Removed the static website from the repository

Added the project to Coveralls

* Increased code coverage

Framework
e Added a @BundleActivator decorator, to define the bundle activator class. The activator module
variable should be replaced by this decorator.

* Renamed specifications constants: from XXX_SPEC to SERVICE_XXX

iPOPO
* Added a waiting list service: instantiates components as soon as the iPOPO service and the component factory
are registered
¢ Added @QRequiresMap handler

e Added an if_valid parameter to binding callbacks decorators: @Bind, @Update, QUnbind,
@BindField, @UpdateField, @UnbindField. The decorated method will be called if and only if the
component valid.

e The get_factory_context () from decorators becomes public to ease the implementation of new
decorators

Remote Services

* Large rewriting of Remote Service core modules
— Now using OSGi Remote Services properties
— Added support for the OSGi EDEF file format (XML)

* Added an abstract class to easily write RPC implementations

110 Chapter 5. Additional Notes

https://coveralls.io/

iPOPO Documentation, Release 0.7.0

Added mDNS service discovery
Added an MQTT discovery protocol
Added an MQTT-RPC protocol, based on Node.js MQTT-RPC module

Added a Jabsorb-RPC transport. Pelix can now use Java services and vice-versa, using:
— Cohorte Remote Services

— Eclipse ECF and the Jabsorb-RPC provider

Shell

* Enhanced completion with readline

* Enhanced commands help generation

* Added arguments to filter the output of b1, s1, factories and instances
* Corrected prompt when using readline

* Corrected write_lines () when not giving format arguments

Added an echo command, to test string parsing

Services

* Added support for managed service factories in Configuration Admin

* Added an EventAdmin-MQTT bridge: events from EventAdmin with an event .propagate property are
published over MQTT

* Added an early version of an MQTT Client Factory service
Miscellaneous

¢ Added a misc package, with utility modules and bundles:
— eventadmin_printer: an EventAdmin handler that prints or logs the events it receives
— jabsorb: converts dictionary from and to the Jabsorb-RPC format

— mgtt_client: a wrapper for the Paho MQTT client, used in MQTT discovery and MQTT-RPC.

5.2.12 iPOPO 0.5.5

Release Date 2013-11-15

Project

The license of the iPOPO project is now the Apache Software License 2.0.

5.2. Release Notes 111

https://github.com/wolfeidau/mqtt-rpc
https://github.com/isandlaTech/cohorte-remote-services
http://wiki.eclipse.org/ECF
https://github.com/isandlaTech/cohorte-remote-services/tree/master/org.cohorte.ecf.provider.jabsorb
http://www.eclipse.org/paho/
http://www.apache.org/licenses/LICENSE-2.0.html

iPOPO Documentation, Release 0.7.0

Framework
* get_x_service_referencex () methods have a default LDAP filter set to None. Only the service spec-
ification is required, event if set to None.

e Added a context use_service (context, svc_ref), that allows to consume a service in a with block.

iPOPO

* Added the Handler Factory pattern: all instance handlers are created by their factory, called by iPOPO according
to the handler IDs found in the factory context. This will simplify the creation of new handlers.

Services

* Added the ConfigurationAdmin service

e Addedthe FileInstall service

5.2.13 iPOPO 0.5.4

Release Date 2013-10-01

Project

* Global speedup replacing 1ist .append () by bisect.insort ().

* Optimizations in handling services, components and LDAP filters.

» Some classes of Pelix framework and iPOPO core modules extracted to new modules.
* Fixed support of Python 2.6.

* Replaced Python 3 imports conditions by try-except blocks.

iPOPO

* QRequires accepts only one specification

e Added a context use_ipopo (bundle_context), to simplify the usage of the iPOPO service, using the
keyword with.

* get_factory_details (name) method now also returns the ID of the bundle provided the component
factory, and the component instance properties.

* Protection of the unregistration of factories, as a component can kill another one of the factory during its invali-
dation.

Remote Services

¢ Protection of the unregistration loop during the invalidation of JSON-RPC and XML-RPC exporters.

* The Dispatcher Servlet now handles the discovered part of the discovery process. This simplifies the Multicast
Discovery component and suppresses a socket bug/feature on BSD (including Mac OS).

112 Chapter 5. Additional Notes

iPOPO Documentation, Release 0.7.0

Shell

* The help command now uses the inspect module to list the required and optional parameters.

e TOHandler now has a prompt () method to ask the user to enter a line. It replaces the read () method,
which was to buggy.

* The make_table () method now accepts generators as parameters.

* Remote commands handling removed: get_methods_names () is not used anymore.

5.2.14 iPOPO 0.5.3

Release Date 2013-08-01

iPOPO
¢ New get_factory_details (name) method in the iPOPO service, acting like
get_instance_details (name) but for factories. It returns a dictionary describing the given fac-
tory.
* New factory shell command, which describes a component factory: properties, requirements, provided ser-
vices, ...
HTTP Service

* Servlet exceptions are now both sent to the client and logged locally

Remote Services

* Data read from the servlets or sockets are now properly converted from bytes to string before being parsed
(Python 3 compatibility).

Shell

» Exceptions are now printed using str (ex) instead of ex .message (Python 3 compatibility).

* The shell output is now flushed, both by the shell I/O handler and the text console. The remote console was
already flushing its output. This allows to run the Pelix shell correctly inside Eclipse.

5.2.15 iPOPO 0.5.2

Release Date 2013-07-19

iPOPO
* An error is now logged if a class is manipulated twice. Decorators executed after the first manipulation, i.e.
upon @ComponentFactory (), are ignored.

* Better handling of inherited and overridden methods: a decorated method can now be overridden in a child class,
with the name, without warnings.

5.2. Release Notes 113

iPOPO Documentation, Release 0.7.0

* Better error logs, with indication of the error source file and line

HTTP Service

* New servlet binding parameters:

— http.name: Name of HTTP service. The name of component instance in the case of the basic
implementation.

— http.extra: Extra properties of the HTTP service. In the basic implementation, this the content
of the http.extra property of the HTTP server component

e New method accept_binding (path, params) in servlets. This allows to refuse the binding with a
server before to test the availability of the registration path, thus to avoid raising a meaningless exception.

Remote Services

 End points are stored according to their framework

* Added a method lost_framework (uid) in the registry of imported services, which unregisters all the
services provided by the given framework.

Shell

¢ Shell help command now accepts a command name to print a specific documentation

5.2.16 iPOPO 0.5.1

Release Date 2013-07-05

Framework

* Bundle.update () now logs the SyntaxError exception that be raised in Python 3.

HTTP Service
e The HTTP service now supports the update of servlet services properties. A servlet service can now update its
registration path property after having been bound to a HTTP service.
* A 500 server error page containing an exception trace is now generated when a servlet fails.

* The bound_to () method of a servlet is called only after the HTTP service is ready to accept clients.

Shell

* The remote shell now provides a service, pelix.shell.remote, with a get_access () method that
returns the (host, port) tuple where the remote shell is waiting for clients.

* Fixed the threads command that wasn’t working on Python 3.

114 Chapter 5. Additional Notes

iPOPO Documentation, Release 0.7.0

5.2.17 iPOPO 0.5

Release Date 2013-05-21

Framework

* BundleContext.install_bundle () now returns the Bundle object instead of the bundle ID.
BundleContext.get_bundle () has been updated to accept both IDs and Bundle objects in order to
keep a bit of compatibility

e Framework.get_symbolic_name () now returns pelix.framework instead of org.psem2m.
pelix

e ServiceEvent.get_type () is renamed get_kind (). The other name is still available but is declared
deprecated (a warning is logged on its first use).

* BundleContext.install_visiting(path, visitor): visits the given path and installs the found
modules if the visitor accepts them

¢ BundleContext.install_package (path) (experimental):
— Installs all the modules found in the package at the given path

— Basedon install_visiting/()

iPOPO

» Components with a pelix.ipopo.auto_restart property set to True are automatically re-instantiated
after their bundle has been updated.

Services

* Remote Services: use services of a distant Pelix instance
— Multicast discovery
— XML-RPC transport (not fully usable)
— JSON-RPC transport (based on a patched version of jsonrpclib)

* EventAdmin: send events (a)synchronously

Shell

 Shell command methods now take an TOHandler object in parameter instead of input and output file-like
streams. This hides the compatibility tricks between Python 2 and 3 and simplifies the output formatting.

5.2.18 iPOPO 0.4

Release Date 2012-11-21

5.2. Release Notes 115

iPOPO Documentation, Release 0.7.0

Framework

* New create_framework () utility method

* The framework has been refactored, allowing more efficient services and events handling
iPOPO

* A component can provide multiple services
A service controller can be injected for each provided service, to activate or deactivate its registration

* Dependency injection and service providing mechanisms have been refactored, using a basic handler concept.

Services

e Added a HTTP service component, using the concept of serviet

* Added an extensible shell, interactive and remote, simplifying the usage of a framework instance

5.2.19 iPOPO 0.3

Release Date 2012-04-13

Packages have been renamed. As the project goes public, it may not have relations to isandlaTech projects anymore.

Previous name New name
psem2m pelix
psem2m.service.pelix pelix.framework
psem2m.component pelix.ipopo
psem2m.component.ipopo | pelix.ipopo.core

5.2.20 iPOPO 0.2

Release Date 2012-02-07

Version 0.2 is the first public release of the project, under the terms of the GPLv3 license.

5.2.21 iPOPO 0.1

Release Date 2012-01-20

The first version of the Pelix framework, with packages still named after the python.injection and PSEM2M
(now named Cohorte) projects by isandlaTech (now named Cohorte Technologies).

Back then, Pelix (bundles and services) was the most advanced part of the project, iPOPO was only an extension of it
to handle basic components.

116 Chapter 5. Additional Notes

https://www.gnu.org/licenses/gpl-3.0.txt

iPOPO Documentation, Release 0.7.0

5.2.22 python.injections

Release Date 2011-12-20

The proof-of-concept package trying to mimic the iPOJO framework in Python 2.6. It only supported basic injections
described by decorators.

5.3 License

iPOPO is licensed under the terms of the Apache Software License 2.0. All contributions must comply with this
license.

5.3.1 File Header

This snippet is added to the module-level documentation:

Copyright 2017 Thomas Calmant

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

5.3.2 License Full Text

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

5.3. License 117

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/

iPOPO Documentation, Release 0.7.0

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

118 Chapter 5. Additional Notes

iPOPO Documentation, Release 0.7.0

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file

5.3. License 119

iPOPO Documentation, Release 0.7.0

format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

120 Chapter 5. Additional Notes

http://www.apache.org/licenses/LICENSE-2.0

Python Module Index

pelix.
pelix.
pelix.
pelix.
pelix.
pelix.
.remote, 68

pelix

framework, 31
http.basic, 60
http.routing, 66
ipopo.decorators, 41
misc.init_handler, 53
misc.log, 56

121

iPOPO Documentation, Release 0.7.0

122 Python Module Index

Index

Symbols

_IPopoService (class in pelix.ipopo.core), 39

A

AbstractHTTPServletRequest (class in pelix.http), 63

AbstractHTTPServletResponse (class in pelix.http), 64

accept_binding() (HttpServlet method), 63

ACTIVE (pelix.framework.Bundle attribute), 100

add() (pelix.remote.registry.ImportsRegistry method), 79

add_bundle_listener() (pelix.framework.BundleContext
method), 91

add_framework_stop_listener()

(pelix.framework.BundleContext method),
91

add_listener() (pelix.ipopo.core._IPopoService method),
39

add_log_listener() (pelix.misc.log.LogReaderService
method), 57

add_property() (pelix.framework . Framework method), 95
add_service_listener() (pelix.framework.BundleContext
method), 92

B

Bind() (in module pelix.ipopo.decorators), 50

BindField (class in pelix.ipopo.decorators), 50

bound_to() (HttpServlet method), 63

Bundle (class in pelix.framework), 99

bundle (pelix.misc.log.LogEntry attribute), 58

BundleContext (class in pelix.framework), 91

bundles (pelix.misc.init_handler.InitFileHandler at-
tribute), 56

C

clear() (pelix.misc.init_handler.InitFileHandler method),
55

ComponentFactory (class in pelix.ipopo.decorators), 41

configurations (pelix.remote.beans.ExportEndpoint at-
tribute), 78

configurations (pelix.remote.beans.ImportEndpoint at-
tribute), 78

(pelix.remote.registry. ImportsRegistry
method), 79

contains()

D

decorated_method(), 67

delete() (pelix.framework.Framework method), 95
Dispatcher (class in pelix.remote.dispatcher), 79
do_GET() (HttpServlet method), 63

E

end_headers() (pelix.http.AbstractHTTPServletResponse
method), 64

EventAdmin (class in pelix.services.eventadmin), 84

exception (pelix.misc.log.LogEntry attribute), 58

ExportEndpoint (class in pelix.remote.beans), 77

F

find_service_references()
method), 95

Framework (class in pelix.framework), 95

framework (pelix.remote.beans.ExportEndpoint at-
tribute), 78

framework (pelix.remote.beans.ImportEndpoint at-
tribute), 78

(pelix.framework.Framework

G

get_access() (pelix.http.basic.HttpService method), 61
get_all_service_references()

(pelix.framework.BundleContext method),
92

get_bundle() (pelix.framework.BundleContext method),
92

get_bundle() (pelix.framework.ServiceReference
method), 35

get_bundle_by_id() (pelix.framework.Framework
method), 96

123

iPOPO Documentation, Release 0.7.0

get_bundle_by_name()
method), 96

get_bundle_context() (pelix.framework.Bundle method),
99

get_bundle_id() (pelix.framework.Bundle method), 99

get_bundles() (pelix.framework.BundleContext method),
92

get_bundles() (pelix.framework.Framework method), 96

(pelix.framework.Framework

get_reference() (pelix.framework.ServiceRegistration
method), 34
get_registered_paths()
method), 61
get_registered_services()
method), 99
(pelix.http.AbstractHTTPServletRequest
method), 64

(pelix.http.basic.HttpService
(pelix.framework.Bundle

get_rfile()

get_client_address() (pelix.http.AbstractHTTPServletRequeget_service() (pelix.framework.BundleContext method),

method), 63

get_command() (pelix.http.AbstractHTTPServletRequest
method), 64

get_endpoint() (pelix.remote.dispatcher.Dispatcher
method), 79

get_endpoints() (pelix.remote.dispatcher.Dispatcher
method), 79

get_factories() (pelix.ipopo.core._IPopoService method),
39

get_factory_details() (pelix.ipopo.core._IPopoService
method), 39

get_framework() (pelix.framework.BundleContext
method), 93

get_header() (pelix.http.AbstractHTTPServletRequest
method), 64

get_headers() (pelix.http.AbstractHTTPServletRequest
method), 64

get_hostname() (pelix.http.basic.HttpService static
method), 61

get_instance_details() (pelix.ipopo.core._IPopoService
method), 40

get_instances() (pelix.ipopo.core._IPopoService method),
40

get_location() (pelix.framework.Bundle method), 99

get_log() (pelix.misc.log.LogReaderService method), 58

get_module() (pelix.framework.Bundle method), 99

get_path() (pelix.http.AbstractHTTPServletRequest
method), 64

get_prefix_path() (pelix.http.AbstractHTTPServletRequest
method), 64

get_properties() (pelix.framework.Framework method),
96

get_properties()
method), 35

get_properties() (pelix.remote.beans.ExportEndpoint
method), 77

get_property() (pelix.framework.BundleContext method),
93

get_property() (pelix.framework.Framework method), 96

get_property() (pelix.framework.ServiceReference
method), 35

get_property_keys()
method), 96

get_property_keys() (pelix.framework.ServiceReference
method), 35

(pelix.framework.ServiceReference

(pelix.framework.Framework

93

get_service() (pelix.framework.Framework method), 96

get_service_objects() (pelix.framework.BundleContext
method), 93

get_service_reference() (pelix.framework.BundleContext
method), 93

get_service_references() (pelix.framework.BundleContext
method), 93

get_services_in_use() (pelix.framework.Bundle method),
99

get_servlet() (pelix.http.basic.HttpService method), 61

get_state() (pelix.framework.Bundle method), 99

get_sub_path() (pelix.http.AbstractHTTPServletRequest
method), 64

get_symbolic_name() (pelix.framework.Bundle method),
99

get_symbolic_name()
method), 96

get_using_bundles() (pelix.framework.ServiceReference
method), 35

get_version() (pelix.framework.Bundle method), 100

get_wfile() (pelix.http.AbstractHTTPServletResponse
method), 64

(pelix.framework.Framework

H

handle_event(), 85

HiddenProperty (class in pelix.ipopo.decorators), 43
Http (class in pelix.http.routing), 67

HttpDelete (class in pelix.http.routing), 67

HttpGet (class in pelix.http.routing), 67

HttpHead (class in pelix.http.routing), 67

HttpPost (class in pelix.http.routing), 67

HttpPut (class in pelix.http.routing), 67

HttpService (class in pelix.http.basic), 61, 62
HttpServlet (built-in class), 63

ImportEndpoint (class in pelix.remote.beans), 78

ImportsRegistry (class in pelix.remote.registry), 79

InitFileHandler (class in pelix.misc.init_handler), 55

install_bundle() (pelix.framework.BundleContext
method), 93

install_bundle() (pelix.framework.Framework method),
97

124

Index

iPOPO Documentation, Release 0.7.0

install_package() (pelix.framework.BundleContext

method), 94

install_package() (pelix.framework.Framework method),
97

install_visiting() (pelix.framework.BundleContext
method), 94

install_visiting() (pelix.framework.Framework method),
97

INSTALLED (pelix.framework.Bundle attribute), 100

instance (pelix.remote.beans.ExportEndpoint attribute),
78

Instantiate (class in pelix.ipopo.decorators), 48

instantiate() (pelix.ipopo.core._IPopoService method), 40

instantiate_components()
(pelix.misc.init_handler.InitFileHandler
method), 55

Invalidate() (in module pelix.ipopo.decorators), 49

is_factory() (pelix.framework.ServiceReference method),
35

is_header_set() (pelix.http.AbstractHTTPServletResponse
method), 65

is_https() (pelix.http.basic.HttpService method), 61

is_prototype() (pelix.framework.ServiceReference
method), 35

K

kill() (pelix.ipopo.core._IPopoService method), 40

L

level (pelix.misc.log.LogEntry attribute), 58

load() (pelix.misc.init_handler.InitFileHandler method),
55

log() (pelix.misc.log.LogServicelnstance method), 57

LogEntry (class in pelix.misc.log), 58

LogReaderService (class in pelix.misc.log), 57

LogServicelnstance (class in pelix.misc.log), 57

lost_framework() (pelix.remote.registry.ImportsRegistry
method), 79

M

make_exception_page()
method), 62

make_import_properties()
(pelix.remote.beans.ExportEndpoint method),

(pelix.http.basic.HttpService

77
make_not_found_page() (pelix.http.basic.HttpService
method), 62

message (pelix.misc.log.LogEntry attribute), 58

N

O

osgi_level (pelix.misc.log.LogEntry attribute), 58

P

pelix.constants.BundleActivator (built-in class), 29

pelix.framework (module), 31, 37

pelix.http.basic (module), 60

pelix.http.routing (module), 66

pelix.ipopo.decorators (module), 41

pelix.misc.init_handler (module), 53

pelix.misc.log (module), 56

pelix.remote (module), 68

post() (pelix.services.eventadmin.EventAdmin method),
84

PostRegistration() (in module pelix.ipopo.decorators), 52

PostUnregistration() (in module pelix.ipopo.decorators),
53

properties (pelix.misc.init_handler.InitFileHandler

attribute), 56

properties (pelix.remote.beans.ImportEndpoint attribute),
78

Property (class in pelix.ipopo.decorators), 42

Provides (class in pelix.ipopo.decorators), 44

R

read_data() (pelix.http.AbstractHTTPServletRequest
method), 64

reference (pelix.misc.log.LogEntry attribute), 58

reference (pelix.remote.beans.ExportEndpoint attribute),

78

register_service() (pelix.framework.BundleContext
method), 94

register_service() (pelix.framework.Framework method),
97

register_servlet() (pelix.http.basic.HttpService method),
61

remove() (pelix.remote.registry.ImportsRegistry method),
79

remove_bundle_listener()
(pelix.framework.BundleContext method),
95

remove_framework_stop_listener()
(pelix.framework.BundleContext method),
95

remove_listener() (pelix.ipopo.core._IPopoService
method), 41

remove_log_listener() (pelix.misc.log.LogReaderService
method), 58

remove_service_listener()

))) (pelix.framework.BundleContext method),
name (pelix.remote.beans.ExportEndpoint attribute), 78 95
name (pelix.remote.beans.ImportEndpoint attribute), 78 rename() (pelix.remote.beans.ExportEndpoint method),
normalize() (pelix.misc.init_handler.InitFileHandler 77

method), 56
Index 125

iPOPO Documentation, Release 0.7.0

Requires (class in pelix.ipopo.decorators), 45

RequiresBest (class in pelix.ipopo.decorators), 46

RequiresMap (class in pelix.ipopo.decorators), 47

RequiresVarFilter (class in pelix.ipopo.decorators), 47

RESOLVED (pelix.framework.Bundle attribute), 100

retry_erroneous() (pelix.ipopo.core._IPopoService
method), 41

S

send() (pelix.services.eventadmin.EventAdmin method),
84

send_content() (pelix.http.AbstractHTTPServletResponse
method), 65

ServiceReference (class in pelix.framework), 34

ServiceRegistration (class in pelix.framework), 34

set_header() (pelix.http.AbstractHTTPServletResponse
method), 65

set_properties() (pelix.framework.ServiceRegistration
method), 34

set_response() (pelix.http.AbstractHTTPServletResponse
method), 65

SingletonFactory (class in pelix.ipopo.decorators), 42

specifications (pelix.remote.beans.ExportEndpoint
attribute), 78
specifications (pelix.remote.beans.ImportEndpoint

attribute), 78

start() (pelix.constants.BundleActivator method), 29
start() (pelix.framework.Bundle method), 100

start() (pelix.framework.Framework method), 98
STARTING (pelix.framework.Bundle attribute), 100
stop() (pelix.constants.BundleActivator method), 29
stop() (pelix.framework.Bundle method), 100

stop() (pelix.framework.Framework method), 98
STOPPING (pelix.framework.Bundle attribute), 100

T

Temporal (class in pelix.ipopo.decorators), 45
time (pelix.misc.log.LogEntry attribute), 58

U

uid (pelix.remote.beans.ExportEndpoint attribute), 78

uid (pelix.remote.beans.ImportEndpoint attribute), 78

Unbind() (in module pelix.ipopo.decorators), 51

UnbindField (class in pelix.ipopo.decorators), 52

unbound_from() (HttpServlet method), 63

unget_service() (pelix.framework.BundleContext
method), 95

uninstall() (pelix.framework.Bundle method), 100

uninstall() (pelix.framework.Framework method), 98

uninstall_bundle() (pelix.framework.Framework
method), 98

UNINSTALLED (pelix.framework.Bundle attribute), 100

unregister() (pelix.framework.ServiceRegistration
method), 34

unregister() (pelix.http.basic.HttpService method), 62

unregister_service() (pelix.framework.Framework
method), 98

Update() (in module pelix.ipopo.decorators), 51

update() (pelix.framework.Bundle method), 100

update() (pelix.framework.Framework method), 98

update() (pelix.remote.registry.ImportsRegistry method),
79

UpdateField (class in pelix.ipopo.decorators), 51

use_ipopo() (in module pelix.ipopo.constants), 38

V

Validate() (in module pelix.ipopo.decorators), 49

W

wait_for_stop() (pelix.framework.Framework method),
98
write() (pelix.http.AbstractHTTPServletResponse

method), 65

126

Index

	Usage survey
	State of this documentation
	User’s Guide
	Foreword
	Installation
	Quickstart
	Tutorials
	Reference Cards

	API Reference
	API

	Additional Notes
	Who uses iPOPO ?
	Release Notes
	License

	Python Module Index

